
MARCH 1996 Delphi INFORMANT ▲ 1

ON THE COVER
7 DLLs: Part I — Andrew Wozniewicz

Dynamic link libraries (DLLs) are the way to share routines
between Windows applications. In this first installment of his three-
part series, Mr Wozniewicz shows us how to create DLLs using
Delphi. He’ll discuss how DLLs can make your system more memo-
ry-efficient, and share some useful string-handling functions.

FEATURES
14 Informant Spotlight — Craig L. Jones

The success of your Delphi application should be revealed before it
is run on the end-user’s machine. Mr Jones says that employing
some quality assurance savvy is the key. Our course of study begins
with QA theory, and the steps needed to apply the appropriate func-
tion tests. Then we’ll begin to build a function-testing Delphi utility.

19 DataSource1 — Karl Thompson
While Delphi can do almost everything, it can’t print table struc-
tures. This month, Mr Thompson provides us with a new download-
able tool called the Table Documentor. Not only does it allow you to
document table structures, this utility also features some general-
purpose Object Pascal programming techniques.

24 OP Tech — Bill Todd
In our last issue, Mr Todd exposed us to Delphi’s error handling
mechanism. This month, our OP Tech completes his round-table
discussion. First, we’ll go over the importance of understanding
the scope of exceptions. Then, we’ll cover everything from rerais-
ing exceptions to creating a custom default exception handler.

March 1996 - Volume 2, Number 3

Cover Art By: Tom McKeith

Dynamic Delphi
Building and Using DLLs

30 DBNavigator — Cary Jensen, Ph.D.
When building a Delphi database program, each drop of a
data-aware component onto a form calls the Borland
Database Engine. Better known as the BDE, this important
tool is crucial for getting and giving data. This month, Dr
Jensen explains the nuances of Delphi’s BDE support, where to
find information on it, and how to use basic BDE calls.

35 The Way of Delphi — Gary Entsminger
Those who want to speak fluent “object” will appreciate Mr
Entsminger’s latest offering. Last month he piqued our OLE2
curiosity by introducing his Objman program. This month, OLE
Automation is the topic. So if you have Delphi 2.0 up and run-
ning, follow along and learn to implement this exciting tech-
nology in your Delphi applications.

40 Informant Quick Tip — Robert Vivrette
It’s a common question: “How do I make command-line para-
meters available to my Delphi application?” As Mr Vivrette
demonstrates, it’s really quite simple — once you know about
ParamCount and ParamStr.

42 At Your Fingertips — David Rippy
This month, Mr Rippy returns with answers to questions that
all start with “How can I ...” You’ll discover how you can: cre-
ate a simple menu-level security system; use the MediaPlayer
component to stretch an .AVI to completely fill a Panel; and
safely disconnect an event handler from an event.

REVIEW
44 ABC for Delphi — Product review by Larry Clark

You all know that a barrage of third-party Delphi components
are available. But which ones will you place on your Component
Palette? To help you decide, Mr Clark has thoroughly reviewed
ABC for Delphi and finds it a “can’t-lose” acquisition.

DEPARTMENTS
2 Editorial
3 Delphi Tools
5 Newsline

Symposium
Catching up with the Hype

We have heard object this and object that for years, but how much impact has object technology really had

on most software developers? Object-oriented programming (OOP) techniques have certainly made

inroads into conventional software development, particularly in C++ and Delphi’s Object Pascal. But other

concepts — such as business objects and object databases — are typically considered bleeding edge by the

mainstream. (Take, for instance, the share of blank looks I received carrying an object database book around at

a developer’s conference last year.) The hype surrounding objects is certainly not new. Nonetheless, as we begin

1996, I believe the technology is finally catching up with all the hyperbole; and when it does, objects will have a

direct impact on how we design software. I’ve noticed four signs of change.
First, object orientation is emerging as a
requirement for visual programming tools.
For years, tools like PowerBuilder,
Paradox, and Visual Basic were “object-
based,” while OOP remained in the 3GL
world with C++ and SmallTalk, or with
niche products like Actor. With Delphi,
Borland bridged two worlds by building a
rapid application development (RAD)
tool on top of an object-oriented lan-
guage. Other vendors are now playing
catch up. The next version of
PowerBuilder is touted as truly object-ori-
ented. Even Visual Basic, while its pro-
gramming language is definitely not OO,
sports distributed object capabilities.

Second, the technology of object storage is
maturing. One of the dilemmas with devel-
oping objects within Delphi has been the
issue of storing object data. Because objects
instantiated at run time are stored only in
memory, all information related to an object
is lost when you close an application. Perhaps
this is inconsequential when you are dealing
with a UI component, but persistent storage
of objects is essential when you want to work
with customers or employees as objects
rather than as database elements. You can use
a traditional relational database, but the
mapping required to store complex objects
can be daunting. Object databases offer
another storage solution, but ODBMSs —
which hold a tiny fraction of the database
market — are typically sold as class libraries
for C++ or SmallTalk.

Fortunately, the ability to store persis-
tent objects in Delphi is beginning to
improve. Object database vendors will be
releasing versions of their products that
can integrate with Delphi and other visual
programming tools. More important,
however, is the trend of major relational
database vendors (particularly Oracle,
Sybase, and Microsoft) to add “object
MARCH 1996
extensions” to their databases. When this
technology appears, you will be able to
store instances of objects as effortlessly as
you can now store a record in a database.

Third, the allure of business objects is
growing. In the RAD world, objects are
often thought of as either UI widgets or
other “system” components like TQuery or
TTimer. (If you don’t believe me, take a
look on the Web and see just how many
variations of Delphi edit controls there
are!) However, while that form of object-
orientation is good, there is potentially a
far more significant aspect to OOP that
can make lasting differences to companies
today: business objects. A business object
encapsulates logic and rules relevant to a
specific business process or entity. While
more expensive to develop than RAD
applications, business objects offer the
promise of reuse and “changability” for
long-term benefits.

Fourth, the technology to develop
multi-tier applications on the Windows
platform is emerging. Until recently,
client/server meant two-tiered architecture;
the application would reside on the client
PC, while the data would be stored in a
SQL database on the server. The inherent
flaw with this approach, however, has been
determining where the business rules of
the application should be stored: within
the client’s UI, or as stored procedures on
the server? Neither choice is ideal. Mixing
presentation code with business logic is a
blueprint for disaster from a maintenance
standpoint. But at the database level, you
are forced to rely on a relatively unsophis-
ticated language — SQL — to manage
complex business rules. In such an envi-
ronment, the ability to deploy business
objects becomes problematic. From an
OO standpoint, the solution is to partition
the application, adding a business logic
layer in between the presentation and
database levels. Undoubtedly, some parti-
tioning can occur simply at the client PC
level (perhaps through dynamic link
libraries). But in distributed environments,
this type of middleware cannot to be
restricted to residing solely on the client.

Until now, little technology has existed for
deploying objects in the Windows environ-
ment. The release of Visual Basic 4.0
Enterprise Edition, however, features a
Component Manager that allows you to
access remote OLE objects from within a
Visual Basic application. Borland and
PowerSoft will surely be offering similar
capabilities in the future with their products.

If you are still skeptical of the significance
of objects, think of the hype surrounding
CD-ROM media in the early 1990s. For
years, industry pundits heralded “The year
of the CD-ROM,” when in fact the num-
ber of PCs that even had CD drives was a
fairly small percentage. Nonetheless, in
1996, CD-ROM dominance is being real-
ized: CD-ROM software revenues will for
the first time exceed that of floppy software
this year. The world finally caught up with
the CD-ROM hype; the same will happen
with object technology.

In the coming months, we’ll look
together at more trends that will have an
impact on Delphi developers in a new col-
umn called File | New.

Richard Wagner, Contributing Editor

Richard Wagner is the chief technical officer
of Acadia Software in Boston, MA and
Contributing Editor to Delphi Informant.
He welcomes your comments at
rwagner@acadians.com.
Delphi INFORMANT ▲ 2

MARCH 1996

New Delphi Book

Crafting Delphi 2 Database
Applications

Richard C. Haven
The Coriolis Group

ISBN: 1-883577-62-4
Price: US$44.99,
Canada $62.99
(1000 pages, CD-ROM)
Phone: (800) 410-0192

Delphi
T O O L S

New Products
and Solutions
A Delphi Web Framework: WebHub for Windows

HREF Tools Corp., of New

York, NY, announced an early
release of WebHub, a Delphi-
based framework for building
and maintaining dynamic,
database-driven World Wide
Web sites.

WebHub includes over 30
Web-specific components that
simplify database-driven Web
site development and mainte-
nance. Its architecture provides
features such as macro expan-
sion, reusable HTML chunks,
and the ability to “refresh” a site
without recompiling the .EXE,
resulting in minimal downtime.

WebHub solves the tough
CGI (Common Gateway
Interface) challenges, accord-
ing to the company. For
example, WebHub augments
Netscape’s “cookie” solution
for persistent client state
with a session object that
automatically tracks surfers
and their data. WebHub
bypasses CGI’s critical per-
formance problem — a
WebHub-based .EXE can
remain running with IDAPI
channels open, while a tiny
4KB .EXE loads and unloads
for each http request.

A free trial version is avail-
able from HREF’s Web site.
Price: US$665

Contact: HREF Tools Corp., c /o Shine &
Company, 9 East 40th Street, New York,
NY 10016
Phone: (800) 365-9533, or (707)
542-0844
Fax: (707) 527-5373
E-Mail: Internet:webhubsales@-
href.com
Web Site: http://www.href.com/
SkyLine Tools Debuts ImageLib 3.1 and ImageLib 95

SkyLine Tools Inc., of

North Hollywood, CA,
recently announced the
release of ImageLib 3.1
Portfolio (16-bit), and
ImageLib 95 (32-bit), a set
of 15 true Object Pascal
VCLs that provide an inter-
face to a central DLL. The
Delphi components allow
programmers to customize
and modify features, thereby
creating new programs.
Using these tools, the novice
programmer can develop
“code free” applications.

ImageLib supports the fol-
lowing graphics file formats:
TIFF, JPEG, PNG, GIF, PCX,
BMP, ICO, WMF, CMS, and
SCM. Images can also be
TWAIN scanned, rotated,
flipped, zoomed, and sized.

The new 16- and 32-bit
versions support AVI, MOV,
RMI, MID, and WAV multi-
media formats, as well as
scrolling text messages in
BLOB fields. Text may also
appear in other sections of
the application, and can be
placed, and/or rotated over
an image. The ImageLib
zoom tool enlarges any por-
tion of an image with a sim-
ple mouse click. Image,
video, and sound files can be
previewed via its new Open
dialog box.
ImageLib is royalty-free and
allows the developer to sup-
ply applications in Windows
3.1 and Windows 95. With
ImageLib you can enable all
image formats with 4- and
8-bit dithering, as well as
24-bit “true color.” ImageLib
provides access to features
like JPEG Quality and JPEG
Smooth, and images can be
converted to JPEG gray
scale.

Price: ImageLib 3.1 Portfolio 16-bit ver-
sion, US$139; ImageLib 95 32-bit ver-
sion, US$169; ImageLib Combo 16- and
32-bit versions, US$199.

Contact: SkyLine Tools Inc., 11956
Riverside Drive, Suite 206, North
Hollywood, CA 91607
Phone: (800) 404-3832
Fax: (818) 766-9027
E-Mail: CIS: 72130,353
CIS Forum: GO DELPHI
Web Site: http://theclassifieds.com/-
skyline_tools
Delphi INFORMANT ▲ 3

MARCH 1996

Delphi
T O O L S

New Products
and Solutions

Delphi Training

Financial Dynamics is a
Borland Premier Connections

Partner headquartered in
Tysons Corner, VA, with offices
in New York, NY; Richmond,

VA; Raleigh, NC; and
Greensboro, NC. Financial

Dynamics offers a full suite of
Delphi training and consulting

services, including monthly
three-day Introductory

(US$1,125), and two-day
Advanced (US$750) courses.
To complement the Borland-
certified courses, Financial
Dynamics offers a series of
client-tailored Boot Camp

workshops. During the Boot
Camp, a development team
and their mentor analyze,

design, build, and deploy a
real-world application selected
by the client. For more informa-

tion contact Paul Fischer at
(800) 486-5201, ext. 124; or

browse their Web site at
http://www.findyn.com/findyn/.
AppSource Announces WIRED API Toolkit: An OLAP Resource for Delphi

AppSource Corp. of Orlando,

FL announced the release of
WIRED API Toolkit, which
includes object class libraries
and visual controls released
from Borland International
and Arbor Software of
Sunnyvale, CA. This toolkit
allows Delphi developers to
create OLAP (On-Line
Analytical Processing) applica-
tions that use the power of
Arbor’s Essbase multidimen-
sional database server.

WIRED API Toolkit acceler-
ates the process of developing
OLAP applications by provid-
ing a set of Delphi component
objects and class libraries for
Essbase. Data-aware database
and report objects can be
dragged from the Delphi
Component Palette and
dropped onto a form, where
their properties can be set at
design time. Dimension
objects are created at run time,
allowing the application to
sense and react to changes in
users’ Essbase databases.

The WIRED API Toolkit
enables third-party developers
and consultants to build
OLAP applications for bud-
geting, sales analysis, product
planning, and financial analy-
sis, leveraging both the flexi-
bility, speed, and ease of
development of Delphi, with
the analytical power and
response time of Essbase.
(WIRED API Toolkit was ini-
tially created for AppSource
Corp.’s WIRED for OLAP
product, also built using
Delphi and Essbase.)

The base version features
database and report objects
with dynamic dimension
object creation. The enhanced
version provides additional
objects and pre-built forms to
front-end the Essbase API.

Price: Base version with unlimited run-
time license, US$995; enhanced version,
US$2,995.

Contact: AppSource Corp., 4751
Rosewood Drive, Orlando, FL 32806-7811
Phone: (800) 611-5664, or
(407) 888-8050
Fax: (407) 888-8070
E- Mail: Internet:appinfo@-
appsource.com
English Wizard VBX Translates English into SQL

Linguistic Technology

Corporation, of Acton, MA,
has announced their English
Wizard VBX for use with
Delphi. English Wizard trans-
lates ordinary English data-
base requests into SQL. It can
enable any database reporting
tool to understand English
requests for information, so
users don’t need to under-
stand SQL to request data.

For the most flexibility,
developers can invoke English
Wizard functions by directly
calling its API. Calling the
DLL directly allows program-
matic changes to English
Wizard’s dictionary.

Additional features of
English Wizard include its
ability to “English-enable”
ODBC-compliant reporting
tools, including Microsoft
Access, Forest & Trees,
Impromptu, InfoMaker,
ReportSmith, Microsoft
Query, and Excel.

Price: US$149

Contact: Linguistic Technology
Corporation, 179 Great Road, Suite 220,
Acton, MA 01720
Phone: (800) 425-8200, or
(508) 266-1818
Fax: (508) 266-1828
E-Mail: Internet:support@lingtech.com
or CIS: 75407,3367
Web Site: http://world.std.com/-
~engwiz
Delphi INFORMANT ▲ 4

MARCH 1996

News
L I N E

Mar ch 1996

Java Track Added to
Borland Developers

Conference
Borland International Inc.
has added a Java track to

its 7th Annual Borland
Developers Conference

scheduled for July 27-31,
1996 at the Anaheim
Convention Center in

Anaheim, CA. For more
information contact Borland

at (408) 431-1000, or
http://www.borland.com.
Five-Year Ordeal Ends: Borland Prevails in Lotus Copyright Suit

Scotts Valley, CA —

Borland International Inc.
has won its five-year copy-
right infringement suit with
Lotus Development
Corporation. The US
Supreme Court, which had
agreed to hear the case last
year, affirmed a decision by
the First Circuit Court of
Appeals which had ruled in
Borland’s favor.

Lotus initially filed its suit
in 1991. In August 1992,
the US District Court in
Boston ruled that an option-
al feature in Borland’s
spreadsheet products, called
the Command Hierarchy,
infringed the copyright of
Lotus 1-2-3. Borland volun-
tarily removed this feature
from shipping versions of
the product following the
decision. The court re-
affirmed its decision in
July, 1993.

In August, 1993, the
Federal District Court ruled
that another compatibility
feature in Quattro Pro and
Quattro Pro for Windows
infringed the copyright of
Lotus 1-2-3. The court sub-
sequently entered an injunc-
tion against Borland against
further sales or distribution
of then current versions of
Borland’s spreadsheet prod-
ucts. In response, Borland
shipped new versions of
Quattro Pro that did not
include the features found to
be infringing, and announced
it would seek an immediate
appeal.

In March of 1995, The US
Court of Appeals for the First
Circuit reversed the District
Court ruling that Quattro
and Quattro Pro infringed
the copyright of Lotus 1-2-3.
In written opinions, three
appellate judges held in favor
of Borland. The court con-
cluded: “Because we hold
that the Lotus menu com-
mand hierarchy is uncopy-
rightable subject matter, we
further hold that Borland did
not infringe the copyright by
copying it.”

Borland sold its Quattro
Pro spreadsheet to Novell
Inc. in March of 1994.

For more information, visit
Borland Online at
http://www.borland.com/.
Delphi Named Finalist in 1996 Excellence in
Software Awards
Washington, DC — The
Software Publishers Association
(SPA) has named Borland’s
Delphi a finalist in the Best
Programming Tool category for
the 1996 Excellence in
Software Awards — the 11th
annual Codie Awards. The
awards will be presented during
SPA’s 11th Annual Codies gala
in San Francisco, CA on
March 4, 1996.
Over a period of seven

weeks, 100-plus reviewers
from the software industry
and national technology
media selected five finalists
in each of the 34 categories.

For more information, visit
SPA’s CompuServe forum
(GO SPAFORUM), or Web
site at http://www.spa.org/.
Delphi Informant Reader’s Choice Banquet

Elk Grove, CA —

Informant Communications
Group, Inc. (ICG) has
announced the first annual
Delphi Informant Reader’s
Choice Awards Banquet,
scheduled for Tuesday,
March 26, 1996, immediate-
ly following the first full day
of Software Development ‘96
West in San Francisco.

The banquet will spotlight
the winners in each of twelve
product categories. The event
will be held at Chevy’s
restaurant, near Moscone
Center, site of Software
Development ‘96 West. The
event is co-sponsored by
ICG and Borland
International.
“We’re very excited about
holding the Delphi Informant
Reader’s Choice Awards
Banquet during Software
Development ‘96 West” said
Mitchell Koulouris, president of
ICG. “It’s the ideal forum to
celebrate the resounding success
enjoyed by Borland’s Delphi
product over the past year, and
an opportunity for third-party
vendors to receive the attention
they deserve.”

The product receiving the
most votes overall will be
named Product of the Year.
The results of this survey will
be published in the April issue
of Delphi Informant, which
will be distributed at Software
Development ‘96 West.
Delphi Web Seminar
Announced

Fairfax, VA — HREF Tools

Corp. has scheduled a free
introductory seminar “Building
World Wide Web Applications
with Delphi and WebHub” for
March 25, from 7PM to 9PM.
Hosted by BRTRC, the semi-
nar will be led by HREF Tools
CEO Ann Lynnworth. For
more information, visit the
HREF Web site at
http://super.sonic.net/ann/-
events.html, or send a message
to seminars@href.com for an
automatic reply.
Delphi INFORMANT ▲ 5

MARCH 1996

News
L I N E

Mar ch 1996

Oracle Sponsors Sun
Microsystems Java Cup

International Developers
Contest

Redwood Shores, CA — Oracle
Corp. is sponsoring Sun
Microsystem’s Java Cup

International, a developer contest
which began last December and
ends March 31, 1996. Winners

will be announced in San
Francisco in April 1996.
Sun hopes to have 500

applets in the public domain
following the contest.

Additional information about
the contest, including prizes to
be awarded, can be found on
Sun’s Java Cup International

World Wide Web page at
http://javacontest.sun.com.
Borland Names New Member and Chairman to Board of Directors

Scotts Valley, CA — Borland
International Inc. has appoint-
ed Dr William F. Miller, 70,
chairman of the company’s
board of directors. Dr Miller, a
professor at Stanford
University, succeeds Philippe
Kahn who resigned as chair-
man effective January 1, 1996.
Borland also announced that
Dr Harry J. Saal, 51, chairman
of Network General Corp., has
been appointed to its board of
directors.

Dr Miller is professor of
public and private manage-
ment, Graduate School of
Business, at Stanford
University; president emeritus
of SRI International; professor
of computer science, School
of Engineering; and senior fel-
low, Institute of International
Studies.

In 1990, Dr Miller retired fol-
lowing 11 years as president
and CEO of SRI International.
He also served as chairman and
CEO of the SRI Development
Co. and chairman and CEO of
the David Sarnoff Research
Center. Prior to his role at SRI,
he was vice president and
provost of Stanford University
and vice president for research
and associate provost of com-
puting. He has served on many
government commissions and
as director of several corpora-
tions. He is currently a member
of the board of directors of
Varian Associates, Inc., First
Interstate Bancorp, First
Interstate Bank of California,
Pacific Gas & Electric Co.,
Regis McKenna, Inc., Scios-
Nova, and the BHP
International Advisory Council.

Dr Miller received his gradu-
ate and undergraduate educa-
tion at Purdue University,
where he received B.S., M.S.,
Ph.D., and D.Sc. honoris
causa degrees.

Dr Saal is chairman of
Network General Corp., a
company he founded in 1986.
Before founding Network
General, Dr Saal founded
Nestar Systems, Inc., a pio-
neer in systems for personal
computers. Dr Saal was the
founding president and CEO
of Smart Valley, Inc., a non-
profit organization chartered
to create a regional electronic
community by promoting an
advanced information infra-
structure and the collective
ability to use it.

Dr Saal is a magna cum laude
graduate of Columbia
University where he received
his Ph.D. in high energy
physics in 1969. He then
served as deputy director of the
Stanford Linear Accelerator
Center’s Computation Group,
and later as visiting associate
professor of computer science
at the State University of New
York at Buffalo. From 1973 to
1978, he worked for IBM at
the IBM Scientific Center in
Haifa, Israel, and the IBM
General Products Division in
San Jose.

Dr Saal also serves on the
board of several other private
and public high technology
firms. Ernst & Young named
Dr Saal the Bay Area 1990
Software Entrepreneur of the
Year.

Other members of
Borland’s board of directors
include Gary Wetsel;
Stephen J. Lewis, managing
director of Generation
Ventures, L.C.C.; David
Heller, director and president
of Pacific Technology Capital
Corp.; George Hara, partner,
Accel Partners; and Philippe
Kahn.
New Delphi Power Tools Catalog Published

Elk Grove, CA — Informant

Communications Group, Inc.
(ICG) has published the Spring
1996 and Spring/Summer
1996 editions of its Delphi
Power Tools, a catalog of third-
party add-in products and ser-
vices that complement
Borland’s Delphi product.
Compiled for the serious
Delphi developer, Delphi Power
Tools is independently pro-
duced by ICG and inserted
into each copy of Delphi 2.0.

Both new editions of the cata-
log feature third-party VCLs,
OCXes, and DLLs that can be
used with Delphi 2.0. The cata-
log also contains a comprehen-
sive listing of third-party add-in
products, consultants, and train-
ers. The Spring 1996 edition of
Delphi Power Tools increased in
size from 52 to 84 pages.

“Delphi Power Tools is a
low-cost, highly effective
method of reaching thou-
sands of Delphi developers”
said Mitchell Koulouris,
president of ICG. “The
Delphi add-in community
has grown and solidified over
the last year and Delphi
Power Tools has been an
important vehicle in growing
the Delphi market.”

ICG plans to produce the
next edition of Delphi Power
Tools in June, 1996. The com-
pany is also planning new edi-
tions of both the Borland C++
Power Tools and Paradox Power
Tools catalogs. Advertisers can
obtain a media kit and more
information by contacting
Advertising Director Lynn
Beaudoin at (916) 686-6610,
ext. 17 (Internet:lbeaudoin@-
informant.com); or Advertising
Sales Associates Sheri
Birkmaier at (916) 686-6610,
ext. 21 (Internet:sbirkmaier@-
informant.com), or Joe Krack
at (916) 686-6610, ext. 27
(Internet:jkrack@-
informant.com).
Delphi INFORMANT ▲ 6

MARCH 1996

On the Cover
Delphi 1.0 / Object Pascal

By Andrew J. Wozniewicz

DLLs: Part I
Introducing Dynamic Link Libraries and

How to Create Them Using Delphi
P rograms running in Windows can share subroutines located in exe-
cutable files called dynamic link libraries (DLLs). Typically, DLLs are used
in the context of a large system or application, where many common

routines are shared among many programs.

This is the first article in a series that describes how to create and use DLLs with Delphi. In
particular, the topics include:
• Creating DLLs using Delphi.
• Declaring import units to automatically make the subroutines in a DLL available to

Delphi programs.
• Using subroutines implemented in DLLs.
• Loading DLLs, and resolving subroutine addresses at run time.

First we’ll cover basic DLL terminology. Then we’ll build some string-handling functions.

Understanding DLLs
A DLL is an executable module containing subroutines that Windows programs can call to
perform common, useful tasks. DLLs are one of the more important elements of Windows,
and exist primarily to provide services to applications. Windows itself uses DLLs to make
Windows subroutines and resources available to Windows applications. It’s probably fair to
say that DLLs are the fundamental concept of Windows architecture.

Windows itself consists largely of three DLLs named KERNEL, USER, and GDI. These
libraries contain the code and data for the Windows application programming interface, or API.

A Delphi application is an executable file that consists of one or more forms or windows. A
program interacts with the user at run time and retrieves messages and events from a message
queue maintained on its behalf by Windows.

In contrast, DLLs are separate libraries of subroutines, containing procedures and functions
that can be called by other programs. However, DLLs are not themselves directly executable
and come into play only when another Windows module calls one of the subroutines in the
DLL. Specifically, DLLs do not have their own message queues and rely on the flow of mes-
sages and events in the application being used.

A Waste of Space
A user can simultaneously run several copies of a program, called instances. These instances share
the same code in memory. However, if you run several programs containing the same subroutine
Delphi INFORMANT ▲ 7

On the Cover
library, the same executable code will be cloned in memory.
The same routines will reside in memory in multiple copies.

In other words, if you statically link the common routines
(shared among many programs) as units to each individual pro-
gram, you end up with identical code that is linked into many
executable modules. If you consider that each of the various
individual programs can be running simultaneously on the same
system, you see that virtually identical code may be loaded
unnecessarily into memory in multiple copies. This results in
space being wasted instead of used for the needs of applications.

DLLs to the Rescue
The solution to this problem is the DLL, and the process of
dynamic linking that eliminates the duplication of common
code. Dynamic linking is the process that Windows uses to link
a subroutine call in one executable module to the actual func-
tion in a dynamic library module at run time. Furthermore, if
you change any of the subroutines in a common, static subrou-
tine library, you must rebuild all the programs that use the
library. However, if you extract the common subroutines and
put them into a separate dynamic library, then only the library
contains the routines required by all programs.

There is only one copy of a dynamic library loaded in memory
at run time, no matter how many programs use it. Additionally,
if you change a subroutine in the common library, you need
only recompile the library module. The programs that use the
library remain intact, unless you have changed the interfaces to
the library. DLLs are similar in concept to Object Pascal units.
They represent an additional step in the quest for separating con-
cerns among different subsystems, or modules comprising a pro-
gram. Object Pascal units are only separate until compile/link
time, when they are combined to form a single executable file.

DLLs remain separate even when an application is deployed.
Therefore, DLLs are more autonomous than Object Pascal
units, and they use the operating system’s (Windows) facilities
rather than the language/compiler facilities to achieve modu-
larization and integration of separate modules. The integra-
tion occurs at run time, late in the development cycle. This is
desirable from the perspective of reusability and flexibility.

In addition to letting applications share executable code, you
can use DLLs to share other resources, such as data and hard-
ware. Windows fonts, for example, are actually shared text-
drawing data, and Windows device drivers actually are special
DLLs that enable applications to share hardware resources.

Although a DLL can have any valid file name extension, the
standard extension is .DLL. Only libraries with the default
extension of .DLL can be loaded automatically by Windows.
If the library file has a different extension, it must be loaded
explicitly by the program that wants to use it. An application
can invoke the standard API LoadLibrary function to explic-
itly load a DLL. We’ll see an example of this later.
MARCH 1996
Dynamic Linking
When a Windows program is loaded into memory, the calls to
the Windows API will point to the entry of the subroutines in
the appropriate DLLs, which also are loaded into memory.
Hence, the executable application module relies on the pres-
ence of other supplementary modules. Typically, the program
cannot run in the absence of the required external DLLs.

Contrast this with the process of static linking, when the
addresses of all subroutines are known beforehand — at com-
pile time. The compiler/linker can appropriately resolve any
static references throughout the program and substitute actual
addresses for symbolic names used in the source code. Static
linking results in a fully self-contained executable file.

Creating Custom DLLs
So far, as you have developed Delphi applications, you have been
writing Windows programs. Now it’s time to develop DLLs for
use by programs. Many of the principles you have learned for
writing Delphi programs are also applicable to writing Delphi
DLLs, but there are some important differences to understand.

As mentioned, DLLs enable you to more economically
share code and resources among many applications.
Although they are important in the overall architecture of
Windows, custom DLLs are not absolutely necessary for
every Windows application. After all, you have probably
built a fair number of Delphi applications without worry-
ing about DLLs. Although each one of these applications
relied on the access to Windows DLLs, you did not have
to deal with the details of loading and binding to DLLs.
This is about to change.

There are several distinct advantages of DLLs that become
increasingly important as your applications become larger,
more sophisticated, and complex:
• DLLs enable you to share code and resources among

many applications.
• Using DLLs, you can easily customize your application for

different purposes.
• DLLs facilitate the development of large, complex applica-

tions by allowing a more strict separation of subsystems.
• DLLs enable you to streamline access to data and data-like

resources (such as business model infrastructures), and to
hardware devices.

Note that you can use DLLs written in other language
environments, and you can write custom DLLs in Delphi.
The interfaces between a DLL and a program are usually
transparent and independent of the implementation lan-
guage. Therefore, any DLL-capable program can call a sub-
routine in a Delphi-created DLL — whether that program
was written in C, C++, Visual Basic, ObjectPAL, dBASE,
etc., or an extension to an off-the-shelf application, includ-
ing macro-language extensions written in Microsoft Word
for Windows or Excel.
Delphi INFORMANT ▲ 8

On the Cover
Your Delphi programs also can call subroutines in DLLs writ-
ten in other languages. As mentioned, they do it continually
whether or not you are aware of it. Every Delphi program
must interact with Windows, and that involves making calls
to one, and typically more, of the three main Windows DLLs.

Declaring Libraries
Conceptually, DLLs can be treated simply as more
autonomous units. However, from a Pascal programmer’s per-
spective, a DLL source code module bears a striking resem-
blance to a program module.

A DLL is defined in the same manner as a program, with the
reserved word library replacing the word program:

library LibMane;
< declarations and implementation >

begin
< optional initialization code >

end.

Figure 1 shows an example of a library module. It begins
with a header, consisting of the reserved word library, fol-
lowed by the library name and a semicolon. The library
implementation follows much of the same rules as the pro-
gram implementation. You can insert uses clauses; declare
types, constants, and variables; and declare and implement
subroutines and classes — in other words, everything you
can do within a program.
Figure 1: An example of a library module.

library StrUtils;

function UpperCaseStr(S: string): string; export;
begin

for I := 1 to Length(S) do
S[I] := UpCase(S[I]);

Result := S;
end;

exports
UpperCaseStr;

begin
end.
Again, similar to a program module, an executable block is
enclosed within a pair of begin and end keywords at the end of a
library module. Its role is similar to the role of a unit initialization
block, rather than that of a program’s executable block. It’s meant
to initialize any local data and objects needed by the library.

The begin..end initialization block of a library module may
(and often does) remain empty. In a library, these keywords
must be present, even if there are no data structures to ini-
tialize. Conversely, with units, the initialization block’s begin
keyword can be omitted if there is no initialization code.

Using the exports Clause
One of the main reasons for having a library is to reuse com-
mon subroutines from different applications. This implies
MARCH 1996
that you must first implement the subroutines to use them.
Fortunately, the way you implement subroutines inside a
DLL is not much different from how you implement them in
a regular program. In fact, you can use the same source code
units that implement subroutines in both programs and
DLLs. Subroutines that are made public by listing them in a
unit’s interface section can be used directly in a program by
being statically linked to it via the uses clause. These subrou-
tines can also be linked into a DLL and made available to a
greater number of applications simultaneously by being
“exported” from the DLL.

Most importantly, when building dynamically linked collec-
tions of subroutines (from the perspective of making the sub-
routines available outside the library), you must explicitly
export those subroutines you intend to be visible outside the
library by creating an exports clause. The syntax for the
exports clause, in its simplest form, follows this convention:

exports
Subroutine1,
Subroutine2,
Subroutine3,
...
SubroutineN;

The exports clause begins with the reserved word exports, fol-
lowed by a list of exported subroutines separated by commas.
The clause is terminated by a semicolon. Here’s an example:

exports
FillStr,
LTrimStr,
RTrimStr;

Only one exports clause may be present in a project. You can-
not place an exports directive inside a unit belonging to a
project; exports can only be placed inside the main library or
program module.

There may be any number of exports clauses in a project’s
main source file. All the subroutines listed inside all the
exports clauses will be made visible to other modules “by
name,” and by other means (we’ll discuss this more later).
When the module that contains an exports clause is com-
piled, the resulting executable file (.EXE or .DLL) contains
special entries that enable Windows to dynamically link the
exported subroutines — at run time — to all other applica-
tions and modules that may need them.

The key to successfully exporting a subroutine from a DLL is
to make the subroutine itself exportable. A subroutine cannot
be exported unless you explicitly define it as exportable by
placing the export directive at the end of the subroutine’s dec-
laration heading.

export Directive
The export directive makes a subroutine exportable and must be
placed after the regular heading in the subroutine’s declaration:
Delphi INFORMANT ▲ 9

On the Cover

Figure 2:
The DLLFIRST
project
before being
modified into
a DLL.
function Name(<Parameters>): ReturnType; export;

or

procedure Name(<Parameters>); export;

Here are some examples:

function StripStr(S: string): string; export;

procedure RefreshBuffers; export;

The export directive instructs the compiler to create special
code at the beginning and end of the compiled routine that
enables Windows to use it from another executable module.

In summary, to make a global subroutine inside a DLL pro-
ject available for use by other Windows executable modules,
you must ensure that:
• The subroutine is declared with the export directive, i.e. it

is exportable.
• The subroutine’s name is listed inside an exports clause

of the library module, i.e. it is actually exported. A sub-
routine may be made exportable (with an export direc-
tive) but not actually exported (with an exports clause).

Architecting DLLs
As a matter of principle, when building reusable DLLs you
should avoid implementing the subroutines being exported as
part of the main library module. There’s a temptation to begin
creating the implementations of the exported subroutines direct-
ly inside the main library module — you could simply start
writing code in the main library project file. This approach,
however, quickly leads to large and unmanageable library files.

You should separate libraries into units for the same reason
you divide programs into separate units. That is, managing
smaller units with well-defined interface sections is far easier
than keeping track of all the subroutines implemented in one
place. Remember that you may be implementing both the
subroutines you intend to export from the library, and the
auxiliary subroutines for the private use of the library itself
that are not exported. By using separate units that group
closely related subroutines, you impose an additional layer of
organization on the library’s code.

An additional benefit to organizing your implementation code in
units is that you can either use dynamic linking, or statically link
the implementing unit into an application. On some occasions,
you may decide that linking the code directly into the applica-
tion is a better approach, or you’ll be content to use the services
encapsulated by your DLL. In either case, it’s better to have one
unit source file that you can use in both scenarios.

Hence, a better approach to organizing a library's code is to
have all the routines, both exported and private, implemented
in a separate unit, or collection of units. The main library
module would have the units it incorporates listed in its uses
clause, and would implement the exports clause.
MARCH 1996
The following example demonstrates how to organize your
subroutines into separate units, yet make them exported from
the library.

A Simple Library Example
The best way to illustrate how to build a DLL is to step
through a practical example. You’ll see that the task of
DLL writing has been made reasonably simple by Delphi
(much simpler than in more traditional environments).
However, you must remember that writing DLLs is a tradi-
tional coding exercise and that Delphi 1.0 does not sup-
port you in any special way beyond providing the raw
capabilities of creating and using DLLs.

Let’s build an example DLL that implements several useful
string-handling subroutines. Here are the steps:

1. Create a new, blank Delphi project.

2. Close it without saving the default form-unit file, Unit1,
which Delphi creates by default. Right-click in the Code
Editor and select Close Page from the pop-up menu. Answer
No when you are prompted to save the unit. The Code Editor
closes because there are no files to edit.

3. Create a new directory named DLLFIRST. Save the project as
DLLFIRST.DPR in the new directory. At this point, your pro-
ject only consists of the main program file, DLLFIRST.DPR.

4. Select View | Project Source from the Delphi menu. The
Code Editor reopens and displays the DLLFIRST program
file (see Figure 2). Now you’ll convert this minimal Delphi
program to an equally minimal DLL.
5. On the first line of code, replace the reserved word pro-
gram with the word library. Then remove:

uses
Forms;

{$R *.RES}

Now remove the Application.Run statement. Your main source
code file is now reduced to:

library Dllfirst;

begin
end.
Delphi INFORMANT ▲ 10

Figure 3:
The shell for
our sample
unit.

On the Cover
6. Congratulations! You’ve just created the world’s simplest
DLL. Don’t forget to save the project.

7. Select Compile | Compile from the Delphi menu. It takes
only a fraction of a second to compile this empty library, but
you now can verify that instead of generating an executable
program file (.EXE) you have succeeded in creating your first
dynamic link library: DLLFIRST.DLL.

Of course, this library is not particularly useful in its current
state. It does not provide any services that a program might
use. Soon, you will develop a set of simple character-string
manipulation routines that will be available from this DLL.

An interesting point to note, however, is that the library may
be used almost “as is” to store various binary Windows
resources, such as bitmaps, icons, and so on. In this context,
the DLL is a repository of dynamically installable resources
rather than a collection of subroutines. Note that if you had
chosen Run | Run instead of Compile | Compile to compile your
DLL, it still would have been compiled, but because it knows
that DLLs are not directly executable, Delphi would have dis-
played the error message “Cannot run a unit or DLL.”

If you close the project at this point and attempt to open it later,
Delphi opens the file but also displays an error message, “Error
in module DllFirst: uses clause missing or incorrect.” Delphi is
telling you that a uses clause is absent from your project file.
Delphi needs the uses clause to maintain the list of source files
belonging to the project, but currently your project consists of
the single, main project file. Although there is no true need for
the uses clause at this point, you have to reintroduce one to pla-
cate Delphi’s code-generation facilities. So modify the project
source to add a uses clause for the WinTypes unit:

library DllFirst;

uses
WinTypes;

begin
end.

Listing WinTypes in the uses clause of the library is safe
because it does not introduce any real dependencies. WinTypes
is a unit that declares various data types used by the Windows
API. It does not implement any code, so you are not adding
overhead to your library. Also, you can later delete WinTypes
from the uses clause entirely. You cannot do that right now,
because there are no other units in the project and this would
eliminate the uses clause altogether. Remember, you cannot
leave the reserved word uses without unit names listed after it.

Using DLLFirst String-Handling Functions
Now let’s implement some string-handling functions inside the
DLL. First, let’s create a separate unit, named XString, that
implements the subroutines. To do this, create a new unit for
the project by selecting File | New Unit from Delphi’s menu.
Then save it as XSTRING.PAS by selecting File | Save File As.
MARCH 1996
The newly-created unit (see Figure 3) is an empty shell.

Now we’re ready to provide the actual string-handling routines
inside the XString unit. We’ll implement the following functions:
• The FillStr function returns a string of a single, repeated

character value.
• The UpCaseFirstStr function capitalizes the first letter of

every word of the passed string argument.
• The LTrimStr function removes leading blanks from the

passed string argument.
• The RTrimStr function removes trailing blanks from the

passed string argument.
• The StripStr function removes all blanks, whether leading,

trailing, or embedded, from the passed string argument.

(This month, we’ll build and analyze FillStr and UpCaseFirstStr.
We’ll move on to the other functions in April.)

In the following sections, note that the declarations of the
string-handling subroutines to place inside the interface sec-
tion of the XString unit include the export directive, while
the implementations no longer repeat and must not repeat the
directive. As noted earlier, the export directive makes these
subroutines exportable across the Windows-module
(.DLL/.EXE) boundaries.

The FillStr Function
The first function to include in your DLL’s XString unit is
FillStr. This classic library function returns a string of the
specified length consisting of the indicated character,
repeated throughout the entire string a specified number
of times.

FillStr is declared as follows:

function FillStr(C: Char; N: Byte): string; export;

The function takes two parameters: 1) the character to be
repeated, C; and, 2) the desired length of the string, N, or the
number of times to repeat the character C. Enter this declara-
tion in the interface section of the XString unit we just created.

Here’s a suggested implementation for the FillStr function:

function FillStr(C : Char; N : Byte): string;
{ Returns a string with N characters of value C }
begin

FillChar(Result[1],N,C);
Result[0] := Chr(N);

end;
Delphi INFORMANT ▲ 11

On the Cover

Figure 4:
The XString
unit with
the FillStr
function
imple-
mented.

function UpCaseFirstStr(const s: string): string;
var

Index: Byte;
First: Boolean;

begin
Result := S;
First := True;
for Index := 1 to Length(S) do

begin
if First then

Result[Index] := UpCase(Result[Index]);
if Result[Index] = ' ' then

First := True
else

First := False;
end;

end;

Figure 5: The UpCaseFirstStr function.
Enter this code in the implementation section of the
XString unit. (The entire unit is shown in Figure 4.) The
function uses a few tricks to get the job done more effi-
ciently. First, it uses the standard procedure FillChar to
quickly fill the Result string with the appropriate character
value. The alternative approach is to set up a for loop that
counts through the subsequent character positions in the
result string and then “stuffs” the character to be repeated
in the character cells. FillChar accomplishes the same task
in a single step.

Second, FillStr forces the returned string to be of the appro-
priate length by explicitly setting the length byte. As you may
recall, the length byte of a string variable is the first cell (byte)
of the string’s character array. FillStr sets the length byte
directly to ensure that the returned string contains the correct
number of characters.

Here’s an example of the FillStr function in use:

var
S1, S2: string;

begin
S1 := FillStr(' ',12);
S2 := FillStr('#',80);

end

After the two calls to FillStr, S1 will contain a string of 12
blanks, and S2 will contain 80 number-sign (#) characters.

The UpCaseFirstStr Function
Another useful addition to the set of standard string-manage-
ment routines already available in Delphi is the UpCaseFirstStr
function. It complements the standard UpperCase and
LowerCase string-handling functions from the SysUtils unit.
UpCaseFirstStr capitalizes the first letter of every word.
UpCaseFirstStr takes a single string parameter and returns the
same string, so it is declared as follows:

function UpCaseFirstStr(const S: string): string; export;

Enter this declaration in the interface section of the
XString unit. The body (i.e. the implementation) of
UpCaseFirstStr mainly consists of a for loop that runs
through all the characters in the string (see Figure 5). If
MARCH 1996
the character is the first letter of a new word, it is capital-
ized, if not, it is skipped.

The First variable is used to track if the Index variable marks
the position of the beginning of a word inside string S at any
given point. The First flag becomes True whenever the current
Index corresponds to the first letter of a word inside the string
S. The flag is set with this if statement:

if Result[Index] = ' ' then
First := True

else
First := False;

The new value of First to be used in the next iteration of the
for loop is True whenever the current location in the string S
is occupied by a blank (ASCII 32 decimal or ' '). This way,
after a blank character is encountered, any non-blank charac-
ter that follows is treated as the beginning of a new word.

The following condition determines if the current character
should be capitalized:

if First then

This checks if the First flag is set (i.e. whether the previous
character in the string was blank) and if so, attempts to capi-
talize the current character. Note that the First flag is initially
set to True just before the loop begins execution. This implic-
itly assumes that the first non-blank character in a string also
marks the beginning of a new word and forces it to be capi-
talized. (Remember to always initialize your variables.)

Place the code of the UpCaseFirstStr function (see Figure 6)
inside the implementation section of the XString unit file.

Here’s an example of how UpCaseFirstStr could be used:

var
S1: string;

begin
S1 := UpCaseFirstStr('teach yourself delphi in 21 days.');

end
Delphi INFORMANT ▲ 12

Figure 6: The XString unit with the UpCaseFirstStr function imple-
mented.

unit Xstring;

interface

function FillStr(C : Char; N : Byte): string; export;
function UpCaseFirstStr(const s: string): string; export;

implementation

function FillStr(C : Char; N : Byte): string;
begin

FillChar(Result[1],N,C);
Result[0] := Chr(N);

end;

function UpCaseFirstStr(const s: string): string;
var

Index: Byte;
First: Boolean;

begin
Result := S;
First := True;
for Index := 1 to Length(S) do

begin
if First then

Result[Index] := UpCase(Result[Index]);
if Result[Index] = ' ' then

First := True
else

First := False;
end;

end;

end.

On the Cover
After the assignment statement is executed, the string S1
contains:

'Teach Yourself Delphi in 21 Days.'

Until Next Time
In the next article, we’ll implement several more Delphi func-
tions into our sample DLL. These functions include
LTrimStr, RTrimStr, and StripStr. We’ll also discuss how to
export the DLL functions we’ve created, and how to call
them from a program. See you then. ∆

This article was adapted from material for Teach Yourself
Delphi in 21 Days [SAMS, 1995], by Andrew Wozniewicz
MARCH 1996 Delphi INFORMANT ▲ 13

Andrew J. Wozniewicz is president and founder of Optimax Development Corporation
(http://www.webcom.com/~optimax), a Chicago-based consultancy specializing in
Delphi and Windows custom application development, object-oriented analysis, and
design. He has been a consultant since 1987, developing primarily in Pascal, C, and
C++. A speaker at international conferences, and an early and vocal advocate of
component-based development, he has contributed articles to major computer indus-
try publications. Andrew can be contacted on CompuServe at 75020,3617 and on
the Internet at optimax@optidevl.com.

MARCH 1996

PQA: Part I
Practical Quality Assurance Techniques for Delphi

For ‘tis the sport to have the engineer
Hoisted with his own petard. — William Shakespeare, Hamlet

Informant Spotlight
Delphi / Object Pascal

By Craig L. Jones
A new application has just been installed on a user’s workstation and it
performs flawlessly — at least as long as the programmer is demon-
strating it. Then, almost immediately after the keyboard was handed

back to the user — boom! Like a crudely manufactured medieval bomb, the
new program explodes before the programmer even had a chance to step
away. How embarrassing!

It seems that during the development and testing of the program, it never occurred to our
developer to try a particular combination of values, hit a certain key at a certain time, or leave
a certain field blank. But the user naturally does not think the same way, and readily wanders
into untried waters. Perhaps the programmer did think to test for those conditions once upon
a time, but the code subsequently changed during later development, allowing new bugs to be
introduced that were never caught. In either case, the developer must now spend unbudgeted
time on further debugging.

The solution is to apply some QA savvy. There’s nothing secret or mysterious about quality
assurance. In fact, it’s really quite simple — just think of everything that can go wrong and
test for it. Of course, that’s easier said than done. The problem is that such work can be
tediously time consuming. The trick then, is to eliminate the tedious aspects by writing test
drivers that automate as much of the testing as possible.

This is the first installment of a three-part series on assuring the quality of Delphi program-
ming projects. This series is primarily directed at Delphi programmers and assumes no prior
knowledge of quality assurance (QA) techniques, although experienced QA engineers may
pick up some pointers on plying their trade in the Delphi environment. Even programmers
who previously disdained the “necessary evil” of QA will discover some enthusiasm for apply-
ing these techniques because they are quick to implement, easy to maintain, and automatical-
ly reusable.

In this installment, we’ll explore some general QA theory and how it applies to the different
stages of program development. We’ll then begin to build a QA tool kit for testing Delphi
programs — starting with a style of test drivers that are useful for testing simple functions.
We’ll also discuss the use of conditional compiler directives to keep the added test driver code
from impacting the final executables.
Delphi INFORMANT ▲ 14

Informant Spotlight
The second installment will expand our QA tool kit to cover
the testing of more complicated procedures and object meth-
ods. We’ll also add facilities for running multiple test drivers
consecutively (unattended), and using a compare program to
check the results against an established baseline.

In the third and final installment, we’ll look at a class of com-
mercially available testing software that can record all user
interaction during a test run of a completed program, and
then play it back at high speed. Screen snapshots are taken
along the way that are later compared to baseline images.

A series wrap-up will then show how the combination of
proper planning with the right tools can make for a dramatic
difference in the quality of a delivered program.

A Little Forethought
The watchword of quality assurance theory is planning. A good
software engineer knows in advance how a program will be test-
ed before writing a single line of code. A complicated (multiple
man-year) project can have as many as eight test plans, covering
each phase of the development cycle (see table in Figure 1).

For small projects, one formal integration test can suffice
as long as:
• the test plan is comprehensive, precise, and developed

in advance of the software to be tested (or at least
simultaneously),

• it is backed up with systematic unit testing (as described
below), and

• other good software engineering practices are followed (cod-
ing conventions, peer reviews, detailed documentation, etc.).

The importance of developing a test plan — before any cod-
ing begins — lies in the fact that the planning process itself
can have as much, if not more, of an influence on the soft-
MARCH 1996

Figure 1: Testing phases for a large project.

1 Requirements Using precisely detailed, written statements
Verification to verify a clear understanding of the user’s

requirements (overall goals and specific
objectives).

2 Design A mental exercise of running through a
Validation program design, looking to ensure that all

the contingencies are covered.

3 Unit Testing Testing individual modules as they are
developed. (Usually performed by the
programmer.)

4 Integration Testing program modules in combination.
Testing (Often performed by a QA specialist.)

5 User Testing performed by a User Advocate or
Acceptance User Analyst during the final phase of
Testing development, particularly focusing on

user-interface details and performance issues.

6 Alpha Testing Comprehensive testing of the completed
program by the developers (or QA specialists)
according to a comprehensive test plan.

7 Beta Testing (a.k.a. “field testing”) Ad hoc testing
performed by a select group of users,
often requiring two or three rounds.

8 Gamma Testing Final field test of the debugged program,
perhaps only now being provided with
completed documentation.
ware development as actually executing the test. For one
thing, by simply having specific testing objectives in mind, a
programmer is bound to be more thorough. Coding decisions
can most definitely be influenced by knowing which eventu-
alities to allow for. Even major design issues can be influenced
in this way, such as designing a report function to double as
an export-to-ASCII function so that you can use a file com-
pare utility to test it.

Test Planning Strategies
Like a journalist or a detective fresh at the scene of a crime,
the best way to build a test plan is by thinking in terms of the
“5 Ws” — who, what, when, where, why (and how):
• What functions must be tested?
• How are they going to be tested?
• Why are the tests necessary? What are the possible prob-

lems?
• Who’s going to conduct the tests? The system designer?

The programmer? A tester? The user advocate? Someone else?
• When in the development cycle do the tests need to be

executed?
• Where (in what environment) should the tests be

performed?

Enumerating what functions need to be tested is as easy
as cannibalizing whatever serves as the system’s require-
ments analysis document. The hard part is determining
the “whys” (i.e. listing everything that can go wrong
with each of those functions). However, once you have
that, determining who, when, where, and how is fairly
straightforward.

One way to unearth the possible problems is to take a
“black box” approach at enumerating the combinations of
conditions that might be troublesome; black box meaning
no matter how the software operates internally. Let’s say,
for example, that you are developing an application to be
used by a librarian.

A typical concern might be how well the software can
process two different books that happen to have the same
title — or for that matter, one book that was reprinted
with a different title than the first edition. After a short
brain-storming session, you might come up with something
on the order of 200 such concerns for a small application.

Second, knowing how the code is designed (taking a white box
approach), seek out additional, technical concerns. The table in
Figure 2 describes four areas of consideration here.

A good test plan will ensure complete path coverage of the
source code during testing, and that all significant boundary
conditions are considered. Any performance issues, especially
critical ones, should be thoroughly explained. Finally, any bugs
that slip through the cracks of the formal testing, but are later
caught by somebody’s ad hoc testing, should be formalized to
prevent regression.
Delphi INFORMANT ▲ 15

Informant Spotlight

Path Testing the various combinations of logic flow through
Coverage a program. At minimum, making sure that each line

of code is executed at least once during testing. At
the extreme, testing each and every combination of
conditional expression values.

Boundary Testing the code’s ability to handle variable/para-
Conditions meter values that are at, or near, specific thresholds

(e.g. 0, 1, 32767, -32768, $9,999.99, $0.005,
00:00, 23:59, 12/31/99, 2/29/2000).

Performance Testing program response times.

Regression Testing to ensure that previously eliminated bugs
do not reappear, either exactly as they had before,
or in some mutated form.

Figure 2: General areas of concern for a test plan.

Figure 3: A function to convert book titles so they can be properly
sorted.

function TitleToSortable(sText: string): string;
var

iNumeral: integer;
begin

{ Convert to upper case. }
sText := UpperCase(sText);

{ Strip leading A, AN, THE. }
if Copy(sText,1,2) = 'A ' then

begin
Delete(sText,1,2);
sText := sText + ', A';

end
else
if Copy(sText,1,3) = 'AN ' then

begin
Delete(sText,1,3);
sText := sText + ', AN';

end
else
if Copy(sText,1,4) = 'THE ' then

begin
Delete(sText,1,4);
sText := sText + ', THE';

end;
{ Convert numerals to words. }
result := '';

repeat
iNumeral := Pos(sText[1],'0123456789')-1;
if iNumeral >= 0 then

begin
Delete(sText,1,1);

case iNumeral of
0: result := result + 'ZERO';
1: result := result + 'ONE';
2: result := result + 'TWO';
3: result := result + 'THREE';
4: result := result + 'FOUR';
5: result := result + 'FIVE';
6: result := result + 'SIX';
7: result := result + 'SEVEN';
8: result := result + 'EIGHT';
9: result := result + 'NINE';

end;
end;

until iNumeral<0;

result := result + sText;

end;
A good test plan will list not only what needs to be tested,
but how the developer intends to conduct the tests. This is
especially important for anyone who is new to writing test
plans, because it forces an examination of the issues from
multiple perspectives. With a little experience, however, a
developer can go directly to building test driver code.

Unit Test Drivers
In his article “Think Objects, Not Reuse” Richard Wagner
[in the November 1995 Delphi Informant] touts the bene-
fit of using inheritance as a “fire-wall” to keep an existing
application from breaking while a related application is
under development, even though they share a common
code base. Wagner states:

First, in creating a subclass you avoid touching the bullet-
proof code of [the parent class], yet at the same time, you
have full access to this code. Second, you can maintain a
link between the ancestor and descendant class.

Thus, if the parent class itself should need to be modified for
some reason (e.g. to accommodate a new operating system), the
subclassed object will automatically benefit from the change.

Wagner makes a valid point, but it begs the question: How
do we know that the parent class code is bulletproof in the
first place? Furthermore, how do we keep it bulletproof on
those occasions when the parent class code does need to be
maintained?

In both cases, the answer is to formalize a unit test for the
object, and then to automate it with a test driver. (Note:
Here, a unit is merely a generic term for a portion of code,
such as an object class or an individual function. It’s not to be
confused with a Pascal unit, i.e. a source code file). Such a
test driver would handle path coverage as well as boundary
condition testing for us by exercising the code, calling it
repeatedly under different situations.

Unit Testing of Simple Functions
For a simple function — one that takes a given number of
arguments and returns a single result value without affecting
anything else — writing a test driver is straightforward. You
MARCH 1996
just need to make a series of calls to the function, passing it
different combinations of arguments each time, comparing
the result to an expected value.

For example, let’s continue with the idea of developing an appli-
cation for use by a librarian. This librarian will be entering book
titles into a database exactly as they appear on the title page. The
system will then need to produce reports sorted by title. To
accomplish this, you decide that you need a function to translate
a given title into a sortable version (see Figure 3). It will have to
move the words “A”, “An”, and “The” to the end of the title, and
make the whole title upper- case. Thus, “The Programmer’s
Bible” becomes “PROGRAMMER’S BIBLE, THE”.
Delphi INFORMANT ▲ 16

Informant Spotlight

procedure Test1;
begin

if sTitleToSortable('The Programmer''s Bible') <>
'PROGRAMMER''S BIBLE, THE' then
MessageDlg('Error: case = The',

mtInformation,[mbOk],0);
if ...
if ...

end;

procedure QA_sAssert(sActual, sExpected: string);
var

sLine: string;
begin

if (sActual = sExpected) then
begin

sLine := '= ' + sActual;
formQALog.memoQALog.Lines.Add(sLine);

end
else

begin
sLine := 'X ' + sActual;
formQALog.memoQALog.Lines.Add(sLine);
sLine := ' ' + sExpected;
formQALog.memoQALog.Lines.Add(sLine);

end;
end;

procedure QA_SortableTest0;
var

sTitle1, sTitle2: string;
iCount: integer;

begin
QA_Start('Title');
QA_Log('TitleToSortable()');
QA_Log('-----------------');

{ Path Coverage: A, An, The, numerals, none. }
QA_sAssert(TitleToSortable('The Programmer''s Bible'),

'PROGRAMMER''S BIBLE, THE');
QA_sAssert(TitleToSortable('Personal Computers'),

'PERSONAL COMPUTERS');
QA_sAssert(TitleToSortable(

'A Guide to Quality Assurance'),
'GUIDE TO QUALITY ASSURANCE, A');

QA_sAssert(TitleToSortable('3 Tier Solutions'),
'THREE TIER SOLUTIONS');

QA_sAssert(TitleToSortable('50 Tips & Trick'),
'FIFTY TIPS & TRICKS');

QA_sAssert(TitleToSortable('An Overview of Pascal'),
'OVERVIEW OF PASCAL, AN');

end;

Figure 4: A test driver that might be written without the QA tool kit. It
could be called from a single-button form.

Figure 6: A path coverage test driver that uses QA_sAssert.

Figure 5: The QA_sAssert procedure. Calling it declares an assertion
that the two arguments should be equal. Comparison results are
added to a memo field in the QALog form. QA_sAssert only compares
strings. Another procedure (e.g. QA_iAssert), would be needed to
compare integer values, and yet another for real numbers, and so on.
Furthermore, any leading numerals in the title should be
translated to words, so that “3 Tier Solutions” will be sorted
alongside “The Three Most Common Mistakes Made By C++
Programmers.” For now, the routine only handles one digit at
a time (e.g. translating “30” to “threezero” as opposed to
“thirty”), which the user agreed would be good enough for
the first phase implementation.

A minimal test sequence for this function will ensure that
each line of code is executed at least once, satisfying the con-
ditions of each of the three if statements (A, An, The). It will
also test for boundary conditions such as a lengthy title, a
brief title, and an empty string. Such a test driver, written
from scratch, might resemble the listing in Figure 4.

Building a Unit-Test Tool Kit
A more generalized approach might be to write a function,
which we’ll call QA_sAssert, that is responsible for comparing
the actual and expected results (of type string). It would
report positive as well as negative findings, logging both to a
memo field (or to a disk file as we’ll see in the next install-
ment), and displaying the complete values of the actual and
expected results (see Figure 5).

A test driver that would take advantage of this procedure
might then resemble the code shown in Figures 6 and 7.
The results of running such a test driver are shown in
Figure 8. The test driver code might be located in the same
source code file (.PAS) as the function being tested, or it
might be kept in a separate unit with other test drivers. The
QA_Start and QA_Log procedures are defined in Figure 9.

To run the test driver, you simply need to create a form
called formQALog that contains a memo field named
memoQALog and a button that runs the test driver. If you
have more than one test driver to run, you can add a
button for each one, or use one button plus a radio button
group (as shown in Figure 8), or some other control
structure.

Conditional Compiler Directives
It’s recommended that the test driver code be placed in the
same source code file (unit) as the functions that are being
tested. This makes for a handy means to develop and
maintain the test drivers in sync with the functions.

Unfortunately, Delphi executables are large enough already.
So, we really don’t want to see the test driver code adding to
the bulk when the final program is released. Fortunately, the
Delphi compiler supports conditional compiler directives,
which allow us to specify whether certain portions of Object
Pascal code are to be compiled.

Compiler directives take the form of special comments. They
are enclosed in braces ({}) like all other comments, and
begin with a dollar sign ($). The three directives of interest
here are: {$DEFINE x}, {$IFDEF x}, and {$ENDIF}, where x
MARCH 1996
is any identifier. Code that appears between an {$IFDEF x}
directive and a corresponding {$ENDIF} directive will only be
considered part of the source code by the compiler if the x
identifier was previously defined.
Delphi INFORMANT ▲ 17

Figure 9 (Top): The QA_Start procedure initializes the memo field
log for a new test run. QA_Log adds information directly into the log
(as opposed to going through QA_sAssert, for example).
Figure 10 (Bottom): Using conditional compiler directives to control
excluding test code from a final build of the program.

{ Boundary Conditions: empty, short, and long titles. }
QA_sAssert(TitleToSortable(''),'');
QA_sAssert(TitleToSortable('A'),'A');
QA_sAssert(TitleToSortable('b'),'B');

sTitle1 := 'A Long Title';
sTitle2 := 'LONG TITLE, A';

for iCount := 1 to 10 do
begin

insert('Very ',sTitle1,3);
insert('VERY ',sTitle2,1);

end;

QA_sAssert(TitleToSortable(sTitle1),sTitle2);

procedure QA_Start(sTestName: string);
begin
formQALog.Caption := sTestName + ' Test Sequence';
with formQALog.memoQALog do

begin
Lines.Clear;
Font.Color := clNavy;
Font.Name := 'Courier New';
Font.Size := 8;

end;
end;

procedure QA_Log(sMessage: string);
begin

formQALog.memoQALog.Lines.Add(' ' + sMessage);
end;

Figure 7 (Top): Additional
test driver code to check for
boundary conditions.
Figure 8 (Left): A test dri-
ver control panel showing
the results of one of the
two test sequences that
have been programmed.
An equal sign (=) denotes
tests that have passed,
where the actual and
expected results agree. An
“X” denotes failed tests,
where the actual result on
the first line disagrees with
the expected result on the
next line.

unit UnitName
{$DEFINE QA_MODE}
...

implementation

< program source code here >
{$IFDEF QA_MODE}

< test driver code here >
{$ENDIF}

end.

Craig L. Jones is a contract software engineer in Southern California with over 14 years
of programming and consulting experience. He is a charter member of the San Diego
Delphi Users Group and is currently serving as a SIG leader for the Orange County
Delphi Users Group. He is also a member of Team Borland, supporting Paradox and
Delphi on the GEnie network. Mr Jones can be reached at
craig.jones@genie.geis.com, or on CompuServe at 71333,3515.

Informant Spotlight
So, to control whether the test driver code is compiled, use
something like the code in Figure 10 which uses {$IFDEF
QA_MODE} ... {$ENDIF} to enclose code that should only be
compiled during testing.

Then, to turn off QA_MODE (thus causing the compiler to
ignore the test driver code as if it were commented out) sim-
ply disable the $DEFINE directive. To do this, you can
remove the dollar sign (making it an ordinary comment), or
change it into an explicit $UNDEFINE directive.

Finally, you will find that as the number of units in your
Delphi project grows, it can become unwieldy to revisit the
$DEFINE directives at the top of each file, converting them
each into $UNDEFINEs and back again.

Another directive, {$I FileName}, tells the compiler to
logically include the source code contained in a file called
FileName as if it were physically present in the source
code file that specified the $I directive. You could thus
replace all the $DEFINE directives in each unit with an $I
directive that names a new file (e.g. PROJDEF.PAS). This
new file would then contain a single $DEFINE statement
that, when changed into an $UNDEFINE, would automati-
cally affect all units at once.
MARCH 1996
Conclusion
With the proper tools and proper planning, assuring software
quality can be relatively painless. We’ve seen how to systemat-
ically develop a comprehensive test plan, some of which
appears in the form of test driver code that is machine-exe-
cutable, and therefore easily repeatable, and we began to build
a QA tool kit for testing Delphi code.

Future installments will add to the tool kit and discuss other,
commercially-available testing software that can be used with
Delphi programs. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603QA.
Delphi INFORMANT ▲ 18

MARCH 1996

DataSource1
Delphi 1.0/ Object Pascal

By Karl Thompson

A Table Documentor
Documenting Database Tables with a Delphi Utility
D elphi is a wonderful tool, but it does have a few omissions. For exam-
ple, Delphi cannot print table structures. The Database Desktop allows
you to view a table’s structure, but cannot print it for you. Of course,

you could always save the structure information to a table, and then create and
print a report of its contents.

The Table Documentor utility presented
in this article (see Figure 1) does just
that. It can display or print Paradox or
dBASE table structures with just a few
mouse clicks.

Furthermore, it isn’t limited to showing
or printing just one structure at a time.
The user can navigate the hard disk,
select a number of tables (within memo-
ry limits), and the Table Documentor
will analyze and process all the tables.
This makes the utility particularly handy
for comparing table structures.

Using the Utility
Before viewing its code, test the pro-
gram. Due to Windows user interface conventions, the program is easy to use, but you should
note some of its more subtle features. For example, you can select files using one of three
techniques:
• Double-click on each file name to add it to the list box on the right. (There is no limit to the

number of files that can be documented at one time.)
• Click on a file and hold C or V while continuing to select files. When all the appropriate files

are selected, click on the > button. The selected files will move to the ... tables to document list.
• Click the >> button and all the tables in the current directory will be documented. If the

directory contains Paradox and dBASE tables, you may limit the selection to one or the other
via the pick list above the Print Structures button. (Figure 2 shows the structures of two tables
being displayed.) You can follow similar steps to deselect files.

Figure 1: The Table Documentor at run time.
Delphi INFORMANT ▲ 19

Figure 2: Form2 (Structure Form) in action.

DataSource1

Figure 3 (Top): Form1 in design mode.
Figure 4 (Bottom): Form2 at design time.
By default, the Table Documentor does not save the path to
the file. However, to document tables in different directories,
the Table Documentor must keep track of the tables’ loca-
tions. You can change the default behavior under the File

menu. When Save Path is ON, the path will be prepended to
the file name. (Storing the table’s path is optional since if the
files are nested several directories deep, then the table name
may not always be visible in the list box on the right. For aes-
thetic reasons, I did not want to widen the main form.)

Another File menu option should also be noted. When Form

Feed is ON (the default), each structure begins printing on a new
page. When Form Feed is OFF, the Table Documentor prints
continuously, regardless of page breaks.

A Look at the Code
Many of the classes, properties, and techniques used by the Table
Documentor have been thoroughly discussed in previous issues
of Delphi Informant and do not require further explanation. In
this article, we’ll:
• closely examine the FieldDef and IndexDefs properties of the

TTable. They provide all the information we need about a
table’s structure.

• concentrate on how to handle printing using only Object
Pascal, thus eliminating the complication of using
ReportSmith or another report writer.

• discuss how to provide users with simple, online help that does
not require the use of the Window’s Help engine. This can be
handy for small applications such as the Table Documentor,
since supplying or installing a .HLP file is unnecessary.

The Table Documentor consists of four forms. The Main Form is
the interface for the user to select tables for documenting (see
Figure 3). Form2 has a TMemo component containing the text that
describes the structure of the tables (see Figure 4). Form3 contains
MARCH 1996
another TMemo component for displaying the help text. A fourth
form is used for an About box. (Note: This About box is not a
standard Delphi component — it’s freeware written by Jeff
Atwood. For more information, see the downloadable message at
the end of the article.)

Form1 is the most complex form in this project. It uses 14 com-
ponents arranged on three TPanels. Panel1 contains two TLabels,
as well as a TFileListBox, TDirectoryListBox, TDriveComboBox,
TListBox, and TFilterComboBox. Panel2 is placed on Panel1 and
contains four TSpeedButtons. A third TPanel contains three
TBitBtns. Additionally, four non-visual components are used:
TMainMenu, TPrintDialog, TTable, and TFontDialog. The
TMemo component that you see in design mode has its Visible
property set to False (we’ll discuss this more later).

The program’s main functionality is contained within the
GetStructures function (see Figure 5). A table’s structure is ana-
lyzed in GetStructures and it’s called whether the structure is
being displayed or printed.
Delphi INFORMANT ▲ 20

MARCH 1996

DataSource1

Figure 5: The GetStructures function.

function TForm1.GetStructures(var M: TMemo) : Boolean;
const

KeyFieldIndicator: String1 = '*';
var

TblCnt, FldCnt, X, Y: integer;
SizeStr: String3;
KeyChar: String1;
PrimIndxStr: string;

begin
Result := True;
Screen.Cursor := crHourglass;
try

with M, Table1 do begin
TblCnt := ListBox1.Items.Count - 1;
Text := ''; { Remove ListBox's default string }
PrimIndxStr := 'None';

for X := 0 to TblCnt do begin
{ 'Add' methods will raise an exception if not

enough memory }
DatabaseName := FileListBox1.Directory;
TableName := ListBox1.Items[X];
{ Update raises an expection if index can't be
found or is unknown }

{ For example: TTable doesn't understand
Rock-e-t's NSX indexes }

FieldDefs.Update;
IndexDefs.Update;
for Y := 0 to IndexDefs.Count - 1 do

{ Find primary index }
if ixPrimary in IndexDefs.Items[Y].Options then

{ Save the fields in the index }
PrimIndxStr := IndexDefs.Items[Y].Fields;

{ Items uses a 0 offset }
FldCnt:= FieldDefs.Count - 1;
Lines.Add('Table : ' + TableName);
Lines.Add('Field(s) in Primary Index : ' +

KeyFieldIndicator);
Lines.Add(format('%3s %-25s %-6s %-s',

['#','Field Name','Type','Required']));
for Y := 0 to FldCnt do begin

if (FieldDefs.Items[Y].Size > 0) then
SizeStr := IntToStr(FieldDefs.Items[Y].Size)

else
{ Size 0 makes no sense for Date type, etc. }
SizeStr := '';

if (Pos(FieldDefs.Items[Y].Name,
PrimIndxStr) = 0) then

KeyChar := ' '
else

{ Indicate keyed field }
KeyChar := KeyFieldIndicator;

Lines.Add(format('%3d %-25s %1s%-5s %-3s',
[FieldDefs.Items[Y].FieldNo,
FieldDefs.Items[Y].Name,
FieldTypeToAbbrevstring(
FieldDefs.Items[Y].DataType),
SizeStr+KeyChar,
BooleanToYNstring(

FieldDefs.Items[Y].Required)]));
end; { Inner field loop }

{ Don't FormFeed after last table, or if
menu's FormFeed is not selected }

if Printing and
X < TblCnt and
FormFeed1.Checked then

begin
Lines.Add(#12); { FormFeed character }

end
else

begin
Lines.Add(''); { Blank lines }
Lines.Add('');

end;
end; { Outer table loop }

end;
finally

Screen.Cursor := crDefault;
end;

end;
In general, Pascal-type strings (managed by a TString object)
are being initialized so that one string contains detail informa-
tion about each field in a table. There are also three header
strings that store the table’s name, a legend row, and a title
row. The string object that is being initialized is a property of
a TMemo object.

The GetStructures function contains an outer loop and two inner
loops that are not nested. The outer loop is used to iterate
through each table in the ListBox1, and to initialize or update
four TTable properties. The current table being documented is
assigned to the Table1.TableName property. Its path is assigned to
Table1.DatabaseName.

Table1.FieldDefs and Table1.IndexDefs are the two key properties
that provide information about a table’s structure. The FieldDefs
object is of type TFieldDefs and contains two properties: Count
stores the total number of fields in the table; and Items is an array
of pointers to FieldDef objects. The FieldDef objects are of type
TFieldDef and define properties such as DataType, FieldNo, Name,
and Size. These hold information about the individual fields. To
initialize each FieldDef and subsequently Table1.FieldDefs, a call
must be made to the FieldDefs.Update method.

At this point, you may wonder why the TTable.Field property
was not used to gather the structure information. The reason lies
in the way Field and FieldDefs are initialized. It’s important to
note that FieldDefs does not require the underlying table to be
open when it’s initialized.

FieldCount’s value could have been easily used to initialize an
index for iterating through Table1.Field — which would obtain
field names and datatypes. However, this requires that Table1 be
opened (i.e. that Table1.Active be set to True) and obviously,
opening the table is not always possible.

Because updating FieldDefs does not require the table to be
open, the Table Documentor can always show the table’s struc-
ture regardless of another application’s interaction with the table.

The second TTable property that we are most concerned with is
IndexDefs, an object of type TIndexDefs. This class has the same
two properties as TFieldDefs, but in this case the Items property
is an array of pointers to instances of TIndexDef. One instance
of TIndexDef is created for each table index. TIndexDef.Field is
a string containing the name of all the fields that comprise the
index. The field names are separated by a semicolon.

Again, there may be a more direct approach to obtaining informa-
tion about the table’s primary index. However, as with TTable.Fields,
if we had used the IndexFields property instead of IndexDefs, we
would have been forced to work with an open table.

Additionally, IndexFields only includes the names of the fields
in the currently active index. If the primary index is not the
active index, more work is needed to make the primary index
the active index.
Delphi INFORMANT ▲ 21

DataSource1

Figure 6: The TForm1.PrintStructures function.

{ This function is based on code from
“Delphi Developer's Guide” by Xavier Pacheco &
Steve Teixeira [Borland Press, 1995], pp. 297. }

function TForm1.PrintStructures(var M: TMemo) : Boolean;
var

X: integer;
StructText: TExtFile;

begin
Result := True;
if (M.Lines.Count = 0) then begin

Result := False;
MessageDlg('No tables selected for documenting...',

mtInformation, [mbOK], 0);
Exit;

end;
{ If PrintDialog1.Execute then we could give user

option to setup printer }
AssignPrn(StructText);
try

Rewrite(StructText);
Printer.Canvas.Font.Assign(M.Font);
for X := 0 to M.Lines.Count - 1 do

writeln(StructText, M.Lines[X]);
finally

CloseFile(StructText);
end;

end;
Another advantage of using IndexDefs is that only minimal work
is needed to increase the Table Documentor’s functionality so it
can include the names of all the indices and fields that are used
in each index.

Like FieldDefs, IndexDefs requires a call to its Update method to ini-
tialize each IndexDef object, and itself. Once FieldDefs and IndexDefs
are initialized, the first of the two inner loops determines which
table’s index is the primary index. The IndexDefs.Items[n].Options
property is evaluated to see if it’s of type ixPrimary. If so, the field
names comprising the index are assigned to PrimIndxStr.

Questions and Answers
Next, we must store the text strings that will be printed or dis-
played. But first, we need to answer this question: What is the
best way to store, display, and print the strings?

The TMemo component on the Standard page of the
Component Palette provides the answer. Many Delphi program-
mers may not realize that a Memo component has two proper-
ties for storing text — TMemo.Text and TMemo.Lines.

For our purposes, the Text property is too restrictive because
the maximum length of its string is 255 characters. Conversely,
the Lines property (a TStrings object) has no such limit, and
initializing the strings with the Add method is easy. Therefore,
the Table Documentor uses TMemo.Lines for string storage.

Before entering the final inner loop, three lines of header infor-
mation are prepared. The first contains the table’s name and
path. The second describes the meaning of the KeyFieldIndicator.
The third call to Add initializes the column title line.

The string’s display to the user is controlled by the call to
Format. If you are unfamiliar with Delphi’s Format function, the
online help provides a good overview of its use (search on
“Format Strings”). (Note that when using Format, any white
space included in the format specifier list is interpreted literally.)

In the final loop, two tests are performed to obtain information
about the field before the string is concatenated. The first is per-
formed so that if the data field’s size is returned as a zero, a
blank can be displayed rather than the illogical zero value. The
second performs a call to the Pos function. If the name of the
current field is in the PrimIndxStr then Pos finds the match and
returns the position of the first character. Therefore, for values
greater than zero indicating that the field is included in the pri-
mary key, the KeyChar is initialized with the KeyFieldIndicator.

After these two tests, the string is ready to be built and added to
Memo1.Lines. One more call is made to Format to concatenate the
string that is used for the line containing the field information.

Printing Table Structures
Often, adding printing functionality to a program is a dreaded
task because, at best, it tends to make for tedious programming.
At worst, it adds a lot of bulk to a program.
MARCH 1996
While the technique used by the Table Documentor may not be
suitable for all projects, it eliminates the arduous aspects of prepar-
ing reports. In addition, the 24-plus line function that handles the
printed output does not add any appreciable bulk to the program.

As we’ve seen, GetStructures initializes a TMemo component’s
Lines property with data that describes a table. Now that the
Lines object is properly formatted, our final task is to output
each string’s value to the printer. This is accomplished by the
PrintStructures function (see Figure 6). PrintStructures depends
upon the Printers unit being listed in the program’s uses clause.
(Note that the code does not use the AssignPrn procedure
declared in the WinPrn unit.)

After some initial data integrity checking, the function assigns a
text file to the current window’s default printer:

AssignPrn(StructText);

AssignPrn simply tells Windows that any output written to the
text file should be sent to the printer using the
TPrinter.Canvas.Font property. For this to happen, there must be
a call to Rewrite that will create and open a new file. If the file
exists, it will be overwritten. (Canvas.Font is initialized in Form1’s
FormShow event handler to the fixed pitch font set at design
time in the TFontDialog component.)

The Writeln statement accomplishes printing. It optionally
accepts the name of a text file variable for its initial parameter
and then writes all its output to that file. Next, a for loop is
used to iterate through each string in the Memo1.Lines object
and send the value of the strings to the printer via the
StructText text file.
Delphi INFORMANT ▲ 22

DataSource1
As mentioned earlier, the GetStructures function handles all the
formatting. Note that the TMemo’s WordWrap property was set
to False at design time.

Online Help
Another aspect of the Table Documentor deserves review. It’s
often nice to provide the user with some simple online help.
Unfortunately, the application does not warrant the time
required to create a Windows Help (.HLP) file complete with
keywords and hypertext links.

One way to handle this is to write a series of string constants that
provide the necessary help, and then use a TMemo component to
display the strings. The Table Documentor uses this technique.

The code from the Info1Click procedure in the UStruct unit is
shown in Figure 7. It initializes Form3 which contains the
TMemo component that displays the help text. The text string’s
constants are actually declared in the UHelp unit. A similar tech-
nique for initializing the Form3.Memo1’s Lines property was used
in GetStructures.
Karl Thompson is an independent Delphi and Paradox developer serving clients from
New York City to Philadelphia. He has been working with Borland’s Pascal develop-
ment environments since 1984. He can be reached at (609) 470-1430, or on
CompuServe at 72366,306 (Internet: 72366.306@compuserve.com.).

Figure 7: The TForm1.Info1Click procedure.

procedure TForm1.Info1Click(Sender: TObject);
begin

{ Basic instructions: simple programs don't require
help files}

{ Create form only as needed so as not to take up
system resources }

Form3 := TForm3.Create(Application);
{ Initialize font }
Form3.Memo1.Font := Form2.Memo1.Font;
Form3.ShowInstructionsModal;
{ Release resources }
Form3.Free;

end;
A Note About Installation and the BDE
Borland insists that the complete BDE and its installation utili-
ty is distributed with all Delphi database applications.
However, you may want to perform a partial install of the BDE
when installing a program (for your use) requiring the BDE.
Therefore, to add the Table Documentor to your arsenal of
programming utilities, the entire BDE is not required.

Assuming the BDE is not installed, to use the Table Documentor,
you must create a directory into which you install the DLLs that
make up the BDE, e.g. C:\IDAPI. Then edit WIN.INI to add an
[IDAPI] group and add one line to that group:

DLLPATH=C:\IDAPI
MARCH 1996
Then copy the following files to the directory you just created
and assigned to the DLLPATH variable:
• IDAPI01.DLL
• IDR10009.DLL
• ILD01.DLL
• IDAPI.CFG (with Delphi’s minimal default values)
• IDPDX01.DLL (Paradox access)
• IDDBAS01.DLL (dBASE access)

After rebooting, the Table Documentor can be used without a
complete BDE installation. These six files only occupy about
1MB (uncompressed) as opposed to the entire BDE that
occupies over 2MB.

Concluding with a Challenge
A how-to article should also challenge the user. Assuming that no
program is ever complete, what features could be added to enhance
the Table Documentor? If I were to write v2.0, it would report more
details about a table’s properties. It would be cool to know about
validity checks, table lookups, and secondary indices, to name a few.

I would also alter the interface slightly by using a tabbed
notebook metaphor. One page would contain the components
on the current main form and the other page would contain
the memo object showing the table structures. When the user
clicks on Show Structures, the code would change pages. I
think that this would be slicker and cause less screen clutter.

Additionally, the form could be minimized and later opened to
reference the structure listings without having to locate the child
form among all the open windows. If anyone makes these modi-
fications, please e-mail a copy of your efforts to me. Thanks! ∆

Figure 6 is based upon Object Pascal code shown on page 297 of
Delphi Developer’s Guide by Xavier Pacheco and Steve Teixeira
[SAMS, 1995].

The sample Table Documentor application described in this
article, and the About box freeware written by Jeff Atwood, are
available on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603KT.
Delphi INFORMANT ▲ 23

MARCH 1996

OP Tech
Delphi / Object Pascal

By Bill Todd

Error Handling: Part II
A Closer Look at Delphi’s Exception Handling Functionality

Figure 1: The procA and procB proce

procedure procB;
var

i: Integer;
begin

i := 2 div 0;
end;

procedure procA;
begin

try
procB;

except
on EIntError do

MessageDlg('Integer math
end;

end;
L ast month, we began this series by discussing the basics of Delphi’s
exception handling mechanism. Our topics included allocating resources
and ensuring proper clean-up, trapping for RTL exceptions, and under-

standing the RTL exception hierarchy.

This month, we’ll take a closer look at exception handling in Delphi by covering these subjects:
• Understanding the scope of exceptions
• Reraising exceptions
• Using the Exception object
• Using silent exceptions
• Creating a custom exception
• Creating a custom default exception handler

Understanding Exception Scope
You must understand the scope of exceptions to determine where you need try..except blocks in
your application, and what will happen if you do not handle an exception. Consider the proce-
dures shown in Figure 1.

When procA calls procB, an integer math exception will be raised by the attempt to divide by zero.
When an exception is not handled in the block where it occurs, execution in the block that caused the
exception ends and control returns to the block that called it. In this case, when the divide by zero
exception occurs in procB, control returns to procA and execution resumes with the exception still raised.
dures.

 error.',mtError,[mbOK],0);
Therefore, the code in the except clause in procA will execute.

Put another way, exceptions “travel” through each nested
try..except block, moving back up the procedure and function
calling chain until they are handled by one of your try..except
blocks, or until they reach Delphi’s default exception handler.

You can provide a default exception handling mechanism in
your Delphi application. Doing so, however, is dangerous. In
Figure 2, note that an else clause appears in the except block.
The else clause will handle all exceptions other than the inte-
ger math exceptions. These are handled by the on EIntError

do statement. Since you may not know how to handle every
type of exception safely, you almost certainly do not want to
write a try..except block with an else clause.
Delphi INFORMANT ▲ 24

Figure 2 (Top): This version of procA attempts to handle all errors —
a bad idea. Excluding math integer errors (these are handled by the
on..do statement), the else clause in the procA procedure handles
all exceptions. Figure 3 (Bottom): This version of procA uses a raise
statement to reraise an exception.

procedure procA;
begin

try
procB;

except
on EIntError do

MessageDlg('Integer math error.',mtError,[mbOK],0);
else

MessageDlg('Some other exception occurred.',
mtError,[mbOK],0);

end;
end;

procedure procA;
begin

try
procB;

except
on EIntError do

MessageDlg('Integer math error.',mtError,[mbOK],0);
else

begin
MessageDlg('Some other exception occurred.',

mtError,[mbOK],0);
raise;

end;
end;

end;

OP Tech

procedure TForm1.MathErrorWithNestedHandlingClick(
Sender: TObject);

var
i,j,k,l,m: Integer;

begin
i := 23;
j := 0;
l := 2;
m := 4;
try

try
k := i + j;

except
on EIntError do

begin
k := 23;
raise;

end;
end;
try

k := k + i div j * (l div m);
except

on EIntError do
begin

k := 0;
raise;

end;
end;

except
on EDivByZero do

MessageDlg('Divide by zero error',mtError,[mbOK],0);
on EIntError do

MessageDlg('Integer math error.',mtError,[mbOK],0);
end;
{ Display the result. }
Result.Caption := IntToStr(k);

end;

Figure 4 (Top): The main form of NEST.DPR.
Figure 5 (Bottom): Implementing nested try..except blocks.
Reraising Exceptions
When you handle an exception with a try..except block, the
exception ends there because Delphi destroys the exception object.

However, you can raise the exception again with the keyword
raise. For example, the code in Figure 3 contains an else clause
that displays a message for all exceptions except integer math
exceptions. However, after the message dialog box has been dis-
played, the raise statement “reraises” the exception so it will be
handled again further up the calling chain.

The ability to reraise an exception lets you easily write nested
try..except blocks without having to duplicate code. You can pro-
vide specific handling in the inner block and reraise the exception
to let the more generic code in the outer try..except block execute.
This technique is demonstrated in the sample project NEST.DPR.
Its main form is shown in Figure 4, and code from the OnClick
event of the form’s Button is shown in Figure 5.

This OnClick event involves a two-step calculation. The value
assigned to the variable k must be 23 if an error occurs in the
first step of the computation, and 0 (zero) if an error occurs in
the second step. Therefore, each of the computation statements
is enclosed in its own try..except block that sets k to the proper
value if an error occurs and reraises the exception.

The outer try..except block handles displaying the correct mes-
sage so that the message display code does not have to be dupli-
cated in the try..except for each step in the calculation.
MARCH 1996
Using the Exception Object
One of the most useful features of Delphi’s exception mecha-
nism is that you can access the Message field in the Exception
object using a special form of the on..do syntax in a
try..except block.

The sample project IOERR.DPR demonstrates this. Figure 6
shows the project’s main form. It has two buttons, each of
Delphi INFORMANT ▲ 25

procedure TForm1.IOErrorBtnClick(Sender: TObject);
var

TestFile: TextFile;
begin

AssignFile(TestFile,'foo.txt');
try

Reset(TestFile);
except

on Ex: EInOutError do
begin

MessageBeep(0);
MessageDlg(Ex.Message + ' Code: ' +

IntToStr(Ex.ErrorCode),
mtError,[mbOK],0);

end;
end;

OP Tech

Figure 6: The main form of the sample
IOERR project.
which contain code
that tries to open a
non-existent file.
Figure 7 shows the
OnClick event handler
for the I/O Error but-
ton. This code tries to
open the non-existent
file FOO.TXT. In the
except block, the
on..do statement:

on Ex: EInOutError do
end;

procedure TForm1.CustomMessageBtnClick(Sender: TObject);
var

TestFile: TextFile;
begin

AssignFile(TestFile,'foo.txt');
try

Reset(TestFile);
except

on Ex: EInOutError do
begin

Ex.Message :=
'The file FOO.TXT could not be found';

raise;
end;

end;
end;

Figure 7 (Top): The I/O Error button’s OnClick event handler.
Figure 8 (Middle): Code attached to the CustomMessage button.
Figure 9 (Bottom): In this example, the Abort procedure blocks a
record from being posted by raising a silent exception.

procedure TCustForm.CustTblBeforePost(DataSet: TDataset);
var

State: string;
begin

State := CustTbl.FieldByName('State').AsString;
if (Length(State) = 2) and

(CustTbl.FieldByName('Country').AsString <>
'America') then

begin
MessageDlg('Country must be America for this State.',

mtError, [mbOk], 0);
Abort;

end;
end;
performs two functions. First, it traps the EInOutError excep-
tion. Second, on..do initializes the variable Ex to give you access
to the Exception object. The type of variable Ex is the type of the
Exception object you are trapping, EInOutError in this case.

In the MessageDlg call, Ex.Message inserts the message text so that
the standard message text for this error is displayed in the custom
dialog box. This field is available for all exceptions. In addition,
Ex.ErrorCode is used to add the operating system error code to the
message. ErrorCode is available in EInOutError exceptions only.

If that was all you could do with the message text it would not be
useful. However, you can change the text of the message and
reraise the exception. For example, look at the code from the
CustomMessage button (see Figure 8). In this case, the code
changes the text of the Message property and reraises the exception.

Thus the standard exception dialog box will appear, but with a
custom, and more descriptive, message. This allows you to take
full advantage of the default exception handling in Delphi and
still easily provide custom error messages that will be more help-
ful to your users and yourself.

There is one final piece of information that you can use when
working with an exception. When an exception is raised, the vari-
able ErrorAddr in the System unit is set to the address in your
code where the error occurred. You can display this information
to the user just as the default exception handler does.

Using Silent Exceptions
As you have seen, the default exception handling mechanism in
Delphi displays a dialog box that contains an error message.
However, there is another class of exception, EAbort, that does
not display an error dialog box. This is called a silent exception,
and it’s so useful that a special procedure called Abort is provid-
ed so you can easily raise a silent exception in your code.

In database applications, the most common use for Abort is to
block an event. An example of this is shown in Figure 9. In this
case the code ensures that if the State field value is two characters
long, and the Country field does not contain “America”, the
record cannot be posted. The call to Abort prevents the record
from being posted by raising a silent exception.
MARCH 1996
Creating Custom Exceptions
You can also create custom exception objects and raise them to
handle error conditions. The code in Figure 10, from the sample
CUSTOM.DPR project, shows how to do this. Figure 11 shows
the application’s main form.

Exceptions are objects and you can raise any object as an excep-
tion. However, there is no reason to do so. Delphi’s exception
handling mechanism will only handle exception objects that are
descendants of Exception. Therefore, you should derive your
exceptions from the Exception base class.
Delphi INFORMANT ▲ 26

implementation

{$R *.DFM}

type
ETestError = class(Exception);

procedure TForm1.CustomExceptionClick(Sender: TObject);
begin

try
raise ETestError.Create('This is a custom exception');

except
on ETestError do

MessageDlg('A custom exception occurred at ' +
IntToHex(Seg(ErrorAddr),4) + ':' +
IntToHex(Ofs(ErrorAddr),4),
mtError,[mbOK],0);

end;
end;

Figure 10 (Top): Creating a custom exception handler.
Figure 11 (Bottom): The main form for the sample CUSTOM project.

OP Tech
The code in Figure 10 derives a new exception, ETestError,
from the Exception class in the type declaration at the begin-
ning of the implementation section of the unit. (Note that
your custom exception type declaration must be global to the
unit.)

To raise your custom exception, use the raise command to raise
the exception and call its constructor, as shown here:

raise ETestError.Create('This is a custom exception');

Raising the exception causes the try..except block to handle the
exception and display the custom error dialog box. Note the use
of the ErrorAddr variable to display the address where the excep-
tion was raised.

Delphi’s components handle errors with their own exceptions
and you can trap and handle those exceptions just as you can
run-time library exceptions.

Creating a Custom Default Exception Handler
So far this discussion of error handling has been limited to
handling errors where they occur in your code. If an error
MARCH 1996
occurs that you do not explicitly trap for in your code, it’s
handled by the default exception handler. So what is the
default exception handler? It’s a method of the Application
object.

The top of the hierarchy in a Delphi application is the
Application object. Its type is TApplication and its name is
always Application. If you look at the project file for a Delphi
application, you’ll find the following two lines in the
begin..end block:

Application.CreateForm(TForm1, Form1);
Application.Run;

Delphi starts your application by calling the Application object’s
CreateForm method to create the main form, and the
Application’s Run method to start the application. (For more
information about the TApplication object, see TApplication in
the Delphi online help.)

Another TApplication method is HandleException. This is the
default exception handler for an application. TApplication also
generates an OnException event whenever an exception occurs
that your code does not handle. If you write an event handler for
the OnException event then your event handler will be used in
place of the default handler.

Creating an event handler for one of the Application object’s
events is a bit more difficult than creating other event handlers.
This is because Application does not appear in the Object
Inspector. To create an event handler for an Application event
you must perform these three steps:
• Write the procedure to handle the event.
• Add the event handler as a method to the type declaration

for the main form.
• Assign the name of the event handler to the event in the

main form’s OnCreate event handler.

The easiest way to understand this process is to look at an exam-
ple provided in the sample application, APP.DPR. The only trick
to writing the event handler is knowing the parameters. For
OnException, the event handler declaration is:

procedure TForm1.AppOnException(Sender: TObject;
E: Exception);

The OnException handler takes two parameters. The first is the
object that called it, and the second is the Exception object that
contains the error message for the exception.

The second step is to add the handler, named
AppOnException in this example, to the main form’s type dec-
laration. Figure 12 is the type declaration for APP.DPR’s
main form. Notice that AppOnException has been added to
the form’s list of methods.

The third step is to assign the name of the exception handler
to the OnException event in the form’s OnCreate handler.
Delphi INFORMANT ▲ 27

OP Tech

type
TForm1 = class(TForm)

Table1: TTable;
CreateAnException: TButton;
procedure AppOnException(Sender: TObject; E:

Exception);
procedure CreateAnExceptionClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

Figure 12 (Top): The type declaration for the APP project’s main
form. Figure 13 (Bottom): The main form for the sample APP project.

Figure 14: The AppOnException exception handler.

procedure TForm1.AppOnException(Sender: TObject;
E: Exception);

var
Addr: string[9];
ErrorLog: System.Text;

begin
AssignFile(ErrorLog,'errorlog.txt');
{ Open the file for appending. If it does not exist
then create it. }

try
System.Append(ErrorLog);

except
on EInOutError do

Rewrite(ErrorLog);
end;
{ Write the date, time, user name, error message,

and address to the error log file.}
Addr := IntToHex(Seg(ErrorAddr),4) + ':' +

IntToHex(Ofs(ErrorAddr),4);
Writeln(ErrorLog,

format('%s [%s] %s %s',[DateTimeToStr(Now),
GetNetUserName, E.Message, Addr]));

{ Close the error log file. }
System.Close(ErrorLog);
{ Display the error message dialog box. }
MessageDlg(E.Message + '. Occurred at: ' +

Addr, mtError, [mbOK], 0);
end;
Select the form and double-click the OnCreate event in the
Object Inspector. Then add the following code:

procedure TForm1.FormCreate(Sender: TObject);
begin

{ Assign the custom OnException handler. }
Application.OnException := AppOnException;

end;

This tells the Application object to call AppOnException when-
ever an unhandled exception occurs. Figure 13 is the main
form for APP.DPR. It contains a TTable object with its
DatabaseName property set to DBDEMOS. It also contains a
Button with the following code in its OnClick handler:

procedure TForm1.CreateAnExceptionClick(Sender: TObject);
begin

Table1.TableName := 'foo.db';
Table1.Open;

end;

This code causes an exception by trying to open a table that does
not exist. The exception handler itself, AppOnException, contains
the code in Figure 14.

The AppOnException exception handler displays the error message
in a dialog box and also writes an entry to an error log text file. The
log file entry includes the date, time, user’s network login name, the
error message, and the address at which the exception occurred.
MARCH 1996
The first task this code performs is to open the error log file:

AssignFile(ErrorLog, 'errorlog.txt');
{ Open the file for appending. If it does not

exist then create it. }
try

System.Append(ErrorLog);
except

on EInOutError do
Rewrite(ErrorLog);

end;

This code tries to open the file for appending. If the file does not
exist, the call to Append raises an EInOutError exception that is
handled in the except block by calling Rewrite to create and then
open the file. The next snippet of code:

Addr := IntToHex(Seg(ErrorAddr),4) + ':' +
IntToHex(Ofs(ErrorAddr),4);

converts the ErrorAddr pointer to a hex string by extracting and
converting first the Segment then the Offset.

The next step is to write the date, time, user name, error mes-
sage, and address to the file and close the file:

Writeln(ErrorLog,
format('%s [%s] %s %s',[DateTimeToStr(Now),

GetNetUserName,E.Message,Addr]));
{ Close the error log file. }
System.Close(ErrorLog);

GetNetUserName is a custom procedure that obtains the user’s
network login name by making a direct call to a BDE
(Borland Database Engine) function (which is beyond the
scope of this article). The final step in this OnException han-
Delphi INFORMANT ▲ 28

OP Tech
dler is to display the dialog box with the error message to the
user. You could also log exceptions to a table in your database
as an alternative to using a text file.

Conclusion
This series has explored Delphi’s exception mechanism for han-
dling run-time errors. As you have seen, exceptions provide a flex-
ible way to implement error handling in your Delphi programs.

You can handle exceptions yourself, let Delphi handle them, take
some custom action and then reraise the exception to let the
default exception handler process it, or just change the text of
the message to add information. ∆

This article was adapted from material from Delphi: A Developer’s
Guide by Bill Todd and Vince Kellen [M&T Books, 1995 —
(800) 488-5233].

The demonstration projects — Nest, IOErr, Custom, and App —
referenced in this article are available on the Delphi Informant
Works CD located in INFORM\96\MAR\DI9603BT.
MARCH 1996 Delphi INFORMANT ▲ 29

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T Books,
1995], Creating Paradox for Windows Applications [New Riders Publishing, 1994],
and Paradox for Windows Power Programming [Que, 1993]; Technical Editor of
Paradox Informant; a member of Team Borland; and a speaker at every Borland data-
base conference. He can be reached at (602) 802-0178, or on CompuServe at
71333,2146.

MARCH 1996

BDE Basics
Examining Delphi’s Support for

the Borland Database Engine

DBNavigator
Delphi / Object Pascal / BDE / Paradox Tables / dBASE Tables

By Cary Jensen, Ph.D.
A lthough Delphi is not a database application, it’s well suited to building
them. Specifically, Delphi is a powerful development environment that
permits you to create applications that store, manipulate, and retrieve

data. In most cases, support for accessing this data is provided by the Borland
Database Engine (BDE), the same database engine used by Paradox for
Windows, Visual dBASE, and Borland C++.

However, BDE support is not a product of Delphi’s compiler. Instead, it’s provided through DLL
calls to the BDE. The Delphi run-time library (RTL) supplies three compiled units that support
these DLL calls: DBIPROCS.DCU, DBITYPES.DCU, and DBIERRS.DCU.

This month’s DBNavigator takes a closer look at the contents of these units, Delphi’s support for
direct BDE calls, and two approaches to calling BDE procedures and functions from within your
Delphi applications.

Backstage Operations
Typically, the BDE’s presence is not obvious to the Delphi database developer until an application
is delivered. Then the BDE must also be delivered if it’s not already on the target computer. This is
because calls to the BDE are, for the most part, encapsulated by components on the Data Access
and Data Controls pages of the Component Palette, or their ancestors. (A notable exception is the
Report component on the Data Access page, which initiates a DDE link with ReportSmith, and
does not involve the BDE directly.)

The primary advantage of this encapsulation is that you can add data access capabilities to your
Delphi applications by simply adding one or more data-aware objects to your form. These objects,
in turn, contain methods and properties that provide you with indirect, yet greatly simplified,
access to the BDE’s procedures and functions.

For example, the Open method of a Table component is a simple method call, requiring no arguments.
This method, however, ultimately results in a call to the BDE function DbiOpenTable, which requires
12 parameters, in addition to several prerequisite calls (specifically, DbiInit and DbiOpenDatabase).

Wanted: Documentation
There are times, however, when you need to get information from, and control features of, the BDE
not surfaced by these controls. Fortunately, most BDE methods and procedures are directly avail-
able to your applications with a minimum of effort. I say most because some BDE calls do not
Delphi INFORMANT ▲ 30

DBNavigator

Figure 1 (Top): The file DBIPROCS.INT contains the interface section
from the DBIPROCS.PAS import unit (the unit that declares and imports
the functions and procedures from a DLL). Figure 2 (Bottom): The
DBIPROCS.INT open to the DbiDoRestructure function on the bottom
editor window, and the DBITYPES.INT file open to the CRTblDesc
record declaration on the top editor window.
appear to be available. For example, the BDE-related units of the
RTL do not contain a method for removing an alias from the
IDAPI.CFG file. Since the Borland Database Configuration utili-
ty can remove an alias, there must be a function or procedure
that provides this capability.

As far as the supported BDE calls are concerned, the one prob-
lem that Delphi developers must overcome is obtaining valid
information about these functions and procedures. Although
Delphi ships with the BDE, it contains no written documenta-
tion for the BDE. Furthermore, examples of BDE calls from
Delphi applications are difficult to find.

It should be noted that Borland sells the BDE as a separate
product, permitting C/C++, Pascal, and other language develop-
ers to access the BDE’s features. This stand-alone BDE product
does ship with complete documentation that would satisfy the
needs of most Delphi developers. As far as I know, Borland does
not sell this documentation separately. And although it was not
available at the time of this writing, I would dearly love to see
Borland make an Adobe Acrobat version of this documentation
available for download (just as they currently do with the Object
Pascal Language Reference and VCL Reference).

But Delphi is not totally devoid of help. While the RTL does not
ship with the actual import units (units that import the functions
and procedures of a DLL) for the BDE API (the formal name for
this is IDAPI — Independent Database Application Programming
Interface), it does ship with the interface section of these units. By
inspecting these interface sections you can see the syntax of every
BDE procedure and function supported by Delphi, as well as the
types and constants used and returned by BDE calls.

If you installed Delphi using the default directories, these interface
files are located in the directory \DELPHI\DOC, and are named
DBIPROCS.INT, DBITYPES.INT, and DBIERRS.INT (the
.INT extension stands for Interface). Figure 1 shows part of the
DBIPROCS.INT file. The source code (.PAS) files are not shipped
with Delphi — only the compiled unit (.DCU) files are shipped.

If you’re planning any development using direct BDE calls, I
think you’ll find these .INT files to be invaluable. Although I do
have a copy of the BDE User’s Guide (I got mine from the prod-
uct Borland C++ and Database Tools), I still use the .INT files
extensively. You can see why by inspecting Figure 2, which dis-
plays two editor windows, one containing the DBIPROCS.INT
file entry for DbiDoRestructure, and the other containing the
DBITYPES.INT declaration for the CRTblDesc record object
(which is used by DbiDoRestructure).

The online help file for the BDE (BDE.HLP) is available from
Borland’s CompuServe forums. The best place to look for it is the
Borland Developers Tools forum (accessed with GO BDEV-
TOOLS). Search the files using the keywords “HELP” and
“BDE”. It’s the closest thing to the BDE documentation available
without purchasing the BDE. For each BDE function and proce-
dure call, the BDE help file contains a description of the call, the
MARCH 1996
syntax, a list of the parameters, a description of the usage, identi-
fies any prerequisites for use, describes the completion state, and,
if the call is a function, describes the return value. As you can
imagine, this is a very important file for the BDE user. A screen
from the BDE.HLP file is shown in Figure 3.

Of course, if you plan to do any important work with the BDE,
you’ll need to buy the BDE proper from Borland. It’s the only
way to get all the documentation you need — including the
BDE User’s Guide — unless you already have the Borland C++
and Database Tools product. [To purchase the BDE call Borland
Customer Service at (510) 354-3828. The price is US$395.]

Making BDE Calls from Delphi Applications
There are two general approaches for working with the BDE.
The first is to provide for all BDE calls directly, without the
intervention of data-aware controls.
Delphi INFORMANT ▲ 31

DBNavigator

Figure 3: The BDE.HLP entry for DbiDoRestructure.
Accessing BDE functions and procedures this way is a lot of work.
This is because you must take responsibility for initializing the
BDE, as well as establishing database handles, cursor handles, and
record handles. These steps are demonstrated in the following sec-
tion. Please use Listing One beginning on page 33 as a reference.

Example 1: Packing Tables
Before any calls to the BDE can be made, you must give your unit
access to the BDE import, type, and constant units. This is
achieved by adding DbiProcs, DbiTypes, and DbiErrs in the uses
clause of the unit from which the BDE calls will be made. In this
example, these units are listed in the interface section’s uses clause.
Figure 5: The main form of RECINFO. Notice the record informa-
tion displayed in the panel at the bottom of the form.
Since this form (see
Figure 4) contains no
data-aware components,
all access to the BDE
must be performed with
Object Pascal. This is
achieved by using three
basic BDE calls: DbiInit,
DbiOpenDatabase, and
DbiOpenTable. Each of
these calls is demonstrat-
ed in the PackTable proce-
dure. In this case, the
table that is selected from
the main form is opened
for exclusive use. This
means that no other user
can access this table while
this procedure has the
table open. It’s also possible, and usually desirable, to open a
table for shared use.

Figure 4: The main form of a project
named PACKTAB.DPR. This form per-
mits you to pack Paradox or dBASE
tables. (Packing releases space from
Paradox tables occupied by deleted
records, and removes records marked
for deletion from dBASE tables.) The
code for this form’s unit is shown in
Listing One on page 33.
The PackTable procedure then demonstrates how to pack a table.
For a Paradox table, you use the function DbiDoRestructure,
while a dBASE table requires the use of DbiPackTable. An exam-
MARCH 1996
ple of both of these procedures is demonstrated. The use of
DbiDoRestructure in this example is as simple as this function
can get. To actually change the structure of a Paradox table with
this function would require a much more complex argument list.

Once your work with the BDE is done, it’s necessary to clean up
after the application. In this case, both the table cursor handle and
the database handle need to be released (using DbiCloseCursor and
DbiCloseDatabase), and then the BDE must be deactivated (using
DbiExit).

Example 2: Displaying Table Information
As you can see from the preceding example, managing access to
the BDE is a lot of work. It’s much easier if you permit data-
aware components to do some of this work for you.

For example, if you place a Table component on a form, and then
open that table, the BDE will already be initialized, a database
handle will be established, and a cursor handle will also exist.
(The database handle can be obtained from the DBHandle prop-
erty of the table, and the cursor handle can be obtained from the
Handle property.) Furthermore, when the application no longer
needs the BDE, the data-aware components take responsibility
for releasing the handles and deactivating the BDE.

This combination of data-aware controls and BDE calls is demon-
strated in the project named RECINFO (see Figure 5). The source
code for this form is shown in Listing Two beginning on page 34.
You will immediately recognize two characteristics in Listing Two.
First, it’s short, requiring far less code than that shown in Listing
One. This is because the internal code for the Table and
DataSource components placed on this form take responsibility
for the initialization of the BDE. The second important feature is
that the DbiProcs, DbiTypes, and DbiErrs units must still appear
in the uses clause, even when data-aware components are present.

The calls to the BDE in this example are found in the event han-
dler assigned to the OnDataChange event property of a
DataSource component. This event handler is called any time
there is a change to the current record. Within this event han-
Delphi INFORMANT ▲ 32

DBNavigator
dler, the BDE procedures DbiGetSeqNo and DbiGetRecordCount
are used to get the current record number and total number of
records, respectively. These values are then used to update a mes-
sage displayed in a Panel component. Note that both of these
BDE calls require the cursor handle. As mentioned previously,
these can be obtained from the Handle property of the table.

Conclusion
While most of the features of the BDE are encapsulated in data-
aware controls, it’s possible to make BDE calls directly to access
features not otherwise provided by these controls. This article
was intended to provide you with a brief overview of some of the
issues involved with making BDE calls from within your Delphi
applications. ∆

The demonstration forms referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603CJ.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database devel-
opment company. He is author of more than a dozen books, and is Contributing Editor of
Paradox Informant and Delphi Informant. Cary is this year’s Chairperson of the Paradox
Advisory Board for the upcoming Borland Developers Conference. He has a Ph.D. in
Human Factors Psychology, specializing in human-computer interaction. You can reach
Jensen Data Systems at (713) 359-3311, or through CompuServe at 76307,1533.
Begin Listing One — The Packtabu Unit
unit Packtabu;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls,
DbiProcs, DbiTypes, DbiErrs, FileCtrl, ExtCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
FilterComboBox1: TFilterComboBox;
DriveComboBox1: TDriveComboBox;
FileListBox1: TFileListBox;
DirectoryListBox1: TDirectoryListBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Panel1: TPanel;
procedure PackTable(Sender: TObject;TabName: PChar);
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}
MARCH 1996
procedure TForm1.Button1Click(Sender: TObject);
var

Tab: PChar;
begin

if FileListbox1.FileName = '' then
begin

MessageDlg('No table select',mtError,[mbOK],0);
Exit;

end;
GetMem(Tab,144);

try
StrPCopy(Tab,FileListBox1.FileName);
PackTable(Sender,Tab);

finally
Dispose(Tab);

end;
end;

procedure TForm1.PackTable(Sender: TObject;
TabName: PChar);

var
hDb :hDBIDb; { Database handle }
hCursor :hDBICur; { Cursor handle }
dbResult :DBIResult; { Return value from BDE calls }
PdxStruct :CRTblDesc; { Paradox restructure record }

begin
{ Initialize the BDE }
dbResult := DbiInit(nil);
if dbResult <> DBIERR_NONE then

begin
case dbResult of

DBIERR_MULTIPLEINIT :
ShowMessage('DBIERR_MULTIPLEINIT');

else
ShowMessage('DbiInit failure');

end;
DbiExit;
Exit;

end;

{ Open a Database }
dbResult :=

DbiOpenDatabase('','STANDARD',dbiREADONLY,
dbiOPENSHARED,'',0,nil,nil,hDB);

if dbResult <> DBIERR_NONE then
begin

case dbResult of
DBIERR_UNKNOWNDB :

ShowMessage('DBIERR_UNKNOWNDB');
DBIERR_NOCONFIGFILE :

ShowMessage('DBIERR_NOCONFIGFILE');
DBIERR_INVALIDDBSPEC :

ShowMessage('DBIERR_INVALIDDBSPEC');
DBIERR_DBLIMIT :

ShowMessage('DBIERR_DBLIMIT');
else

ShowMessage('DbiOpenDatabase failure');
end;

Exit;
end;

{ Open a table. This returns a handle to the table's
cursor, which is required by many of the BDE calls. }

dbResult :=
DbiOpenTable(hDB,TabName,'','','',0,dbiREADWRITE,

dbiOPENEXCL,xltNONE,False,nil,hCursor);
if dbResult <> DBIERR_NONE then

begin
case dbResult of

DBIERR_INVALIDFILENAME :
ShowMessage('DBIERR_INVALIDFILENAME');

DBIERR_NOSUCHFILE :
Delphi INFORMANT ▲ 33

DBNavigator
ShowMessage('DBIERR_NOSUCHFILE');
DBIERR_TABLEREADONLY :

ShowMessage('DBIERR_TABLEREADONLY');
DBIERR_NOTSUFFTABLERIGHTS :

ShowMessage('DBIERR_NOTSUFFTABLERIGHTS');
DBIERR_INVALIDINDEXNAME :

ShowMessage('DBIERR_INVALIDINDEXNAME');
DBIERR_INVALIDHNDL :

ShowMessage('DBIERR_INVALIDHNDL');
DBIERR_INVALIDPARAM :

ShowMessage('DBIERR_INVALIDPARAM');
DBIERR_UNKNOWNTBLTYPE :

ShowMessage('DBIERR_UNKNOWNTBLTYPE');
DBIERR_NOSUCHTABLE :

ShowMessage('DBIERR_NOSUCHTABLE');
DBIERR_NOSUCHINDEX :

ShowMessage('DBIERR_NOSUCHINDEX');
DBIERR_LOCKED :

ShowMessage('DBIERR_LOCKED');
DBIERR_DIRBUSY :

ShowMessage('DBIERR_DIRBUSY');
DBIERR_OPENTBLLIMIT :

ShowMessage('DBIERR_OPENTBLLIMIT');
else

ShowMessage('DbiOpenTable failure');
end;
DbiCloseDatabase(hDB);
DbiExit;
Exit;

end;

{ The BDE is initialized, a database is open, and
a cursor is open for a table. We can now work with
the table. The following segment shows how to pack
a dBASE or Paradox table. Note that before we can
pack the Paradox table, the table's cursor handle
must be closed, otherwise we would get a 'Table in
use' error. }

try
Panel1.Caption := 'Packing ' + FileListBox1.FileName;
Application.ProcessMessages;

if AnsiUpperCase(ExtractFileExt(
FileListBox1.FileName)) = '.DB' then

begin
{ Close the Paradox table cursor handle. }
DbiCloseCursor(hCursor);
{ The method DoRestructure requires a pointer

to a record object of the type CRTblDesc.
Initialize this record. }

FillChar(PdxStruct,SizeOf(CRTblDesc),0);
StrPCopy(PdxStruct.szTblName,

FileListBox1.Filename);
PdxStruct.bPack := True;
dbResult :=

DbiDoRestructure(hDB,1,@PdxStruct,nil,
nil,nil,False);

if dbResult = DBIERR_NONE then
Panel1.Caption := 'Table successfully packed'

else
Panel1.Caption :=

'Failure: error ' + IntTostr(dbResult);
end

else
begin

{ Packing a dBASE table is much easier. }
dbResult := DbiPackTable(hDB,hCursor,'','',True);
if dbResult = DBIERR_NONE then

Panel1.Caption := 'Table successfully packed'
else

Panel1.Caption :=
'Failure: error ' + IntTostr(dbResult);

end;
MARCH 1996
finally
DbiCloseCursor(hCursor);
DbiCloseDatabase(hDB);
DbiExit;

end;
end;

end.
End Listing One
Begin Listing Two — The Recnou Unit
unit Recnou;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, Grids, DBGrids,
ExtCtrls, DB, DBTables, DbiProcs, DbiTypes, DbiErrs;

type
TForm1 = class(TForm)

DataSource1: TDataSource;
Table1: TTable;
Panel1: TPanel;
DBGrid1: TDBGrid;
procedure DataSource1DataChange(Sender: TObject;

Field: TField);
private

{ Private declarations }
public

{ Public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.DataSource1DataChange(Sender: TObject;
Field: TField);

var
i,j: LongInt;

begin
Table1.UpdateCursorPos;
DbiGetSeqNo(Table1.Handle,i);
DbiGetRecordCount(Table1.Handle,j);
Panel1.Caption :=

'Record '+ IntToStr(i) + ' of ' + IntToStr(j);
end;

end.
End Listing Two
Delphi INFORMANT ▲ 34

MARCH 1996

The Way of Delphi
Delphi 2.0 / Object Pascal / OLE

By Gary Entsminger

Approaching
OLE Automation:
Delphi 2.0 & Word Basic
State of the Object Art: Part III
Another thing I dislike: A writer who says he’s going to write about one thing and then writes about
another the first chance he gets (see Part II in the February 1996 issue of Delphi Informant). But
I can’t help myself — something more interesting has come up.
I started this discussion on the “State of the Object Art” using 1988 as a
benchmark (see Part I in the January 1996 issue of Delphi Informant). Then,
objects were mostly small timers in programming — hardly in the comput-

ing lingo. Only a few languages spoke “object” — Smalltalk, Actor, and C++ —
and serious developers traveled elsewhere.

But in 1996, “object” is spoken all over the map — by OOP programmers, by system soft-
ware, by users, by the computing media. Even on the Internet, it’s an object-oriented language
— Java — that’s suddenly got our attention.

In this installment (Part III), we’ll explore a new darling of the object art — OLE
Automation. It’s a way to manipulate other applications as objects from your Delphi applica-
tions. It’s a powerful concept, and I think you’ll like it when you try it.

In the first part of this article, you’ll learn the basics of OLE Automation. In the second part, you’ll
create a little application that shows how OLE Automation works. This application, called the
OLE Automation Explorer, connects a Delphi application to Word Basic via OLE Automation.

(Note that Delphi 1.0 does not have OLE Automation capabilities. Delphi 2.0 does, and it’s
one of many good reasons to switch to Delphi 2.0. However, even with Delphi 1.0, you can
easily follow along.)

OLE Automation, a Gentle Introduction
You use OLE Automation to control other applications, which are sometimes called “pro-
grammable Windows objects” in this context, from your Delphi applications. The key
words are programmable and objects. Programmable, in this context, means “accessing and
manipulating another application’s commands.” In object-oriented terms, commands are
methods and properties, and an object is an application that supports OLE Automation.

Before your Delphi application can use OLE Automation to “program” another applica-
tion in the Windows environment, the application must support OLE Automation. For
example, applications in the Microsoft Office group (Word, Excel, etc.) support OLE
Automation. You can use programming languages such as C++, Visual Basic 4.0, and
Delphi INFORMANT ▲ 35

The Way of Delphi
Delphi 2.0 to create applications that support OLE
Automation.

An application (i.e. object) that supports OLE Automation
provides methods or properties that other applications can
access through code. Using OLE Automation, your applica-
tions can request that other applications perform tasks from
within your applications. Thus you don’t have to write the
code for the task yourself. When your application needs to
perform the task, it invokes the OLE Automation object’s
method that handles the specific task. You request service, task
by task. Thus you use only as much of the OLE Automation
object’s functionality as you need, when you need it.

For example, if your application requires some spreadsheet
functionality that already exists in Microsoft Excel, you
can create a reference to an Excel spreadsheet — an OLE
Automation object — and have Excel handle the task.

Similarly, you can add word processing capability to your
Delphi application by using the Microsoft Word for
Windows (WinWord) Basic command language to manip-
ulate a WinWord file. For example, you can use
WinWord’s proofing tools (spelling, thesaurus, word
count) and its ability to create and manipulate tables with-
in text. The possibilities are limited by your imagination
and the capabilities of specific OLE Automation Servers.

Although a relative newcomer to the computing arena,
OLE Automation is one cool way to open up a system. In
an easy ridin’ kind of object-oriented world, no one would
have to recreate existing functionality. He or she could
simply tap into what’s already there and avoid writing
some code. It might even save some programming time.

Using OLE Automation, the Basics
In general, making a Delphi application OLE Automation-
capable requires the following general steps:
• In the uses part of the unit, make Delphi 2.0 OLE

Automation support accessible to your application by
adding the OLEAuto.pas unit supplied by Delphi 2.0:

uses
OLEAuto;

This file contains the low down, dirty OLE Automation
details. Check it out if you’re so inclined.

• In the procedure that accesses the OLE Automation
object, declare a Variant variable to represent the OLE
Automation server. The Variant type is new to Delphi 2.0:

MSWord: Variant; { Represents OLE Automation Server. }

• Use the Delphi 2.0 CreateOLEObject function to create
the OLE Automation object and return a reference to it:

MSWord := CreateOLEObject('Word.Basic');
MARCH 1996
• Access OLE Automation properties and methods as needed.

Those are the basics. Each OLE Automation server will have
its own set of properties and methods you can use. Find out
which ones are available by consulting the application’s docu-
mentation or online help.

The Example Project: OLE Automation Explorer
Now, for a no-bells-and-whistles OLE Automation applica-
tion: OLE Automation Explorer, Take One.

From the Delphi 2.0 main menu, create a new project. Use the
default form as the main (and only) form for this project.

Use the Component Palette to add the following components
to the form:
• six Edit components
• two Button components

Next, use the Object Inspector to change the Text property
of each of the Edit components. By default, these compo-
nents contain the strings: Edit1, Edit2, Edit3, Edit4,
Edit5, and Edit6. Change each of these strings to a num-
ber. Your choice.

Next, change the Caption prop-
erty of the two Buttons to Use
Fields and Random. Change the
Caption of the Form to Auto
Explorer. Then, change the
FormStyle property of the Form
to fsStayOnTop, to allow the
Delphi application to float over
the OLE Automation server.
Figure 1 shows this form at
design time.

Use the Object Inspector’s
Events page to create OnClick
events for the Buttons. To do this, double-click the OnClick
event edit box in the Object Inspector for each Button to
create templates for the events (see Figure 2). (Or you can
simply double-click on each Button component.)

Figure 3 shows the class description for the form.
Everything in this application occurs in response to the
two OnClick events. The OnClick procedures behave simi-
larly; each creates an OLE Word Basic object and uses
Word Basic commands to create a file and manipulate data
within the file.

The Use Fields Button
The Use Fields button OnClick event procedure
(TForm1.Button1Click) builds a string of data delimited (sep-
arated) by commas. It inserts the resulting string of data in
the new WinWord file. It then moves to the beginning of the
data and converts the data to a WinWord table.

Figure 1: The main form of
the example application, OLE
Automation Explorer, at
design time.
Delphi INFORMANT ▲ 36

The Way of Delphi

Figure 2 (Top): Creating the template for an OnClick event handler.
Figure 3 (Bottom): The class description for the form.

type
TForm1 = class(TForm)

Edit1: TEdit; { 6 edit boxes to hold fields. }
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
Button1: TButton; { Use fields button. }
Button2: TButton; { Generate random table button. }
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

end;

Figure 4: The Use Fields button’s OnClick event procedure,
TForm1.Button1Click.

procedure TForm1.Button1Click(Sender: TObject);
var

S : string;
MSWord: Variant; { Represents OLE Automation Server. }

begin
{ Create an OLE Word Basic object. }
MSWord := CreateOLEObject('Word.Basic');
{ Use Word Basic commands to create a new Word file. }
MSWord.FileNew;

{ Build a string from edit boxes. }
S := Edit1.Text + #13;
S := S + Edit2.Text + #13;
S := S + Edit3.Text + #13;
S := S + Edit4.Text + #13;
S := S + Edit5.Text + #13;
S := S + Edit6.Text + #13;

{ Use Word Basic to insert the string
into the current Word file. }

MSWord.Insert(S);
{ Use Word Basic to move 6 lines up,

to the beginning of the file. }
MSWord.LineUp(6,1);
{ Use Word Basic to post a message to user. }
MSWord.MsgBox('Converting fields to table.');
{ Use Word Basic to convert text to a table. }
MSWord.TextToTable(ConvertFrom := 2,

NumColumns := 1);
end;
The Button1Click procedure also declares a Variant variable to
represent MSWord and uses the Delphi CreateOLEObject
function to create the OLE Automation object:

MSWord: Variant; { Represents OLE Automation Server. }
begin

{ Create an OLE Word Basic object. }
MSWord := CreateOLEObject('Word.Basic');

It then uses WinWord’s FileNew method (or command) to
create a new file within Word:

{ Use Word Basic commands to create a new Word file. }
MSWord.FileNew;

builds a string from the contents of the six Edit components:

S := Edit1.Text + #13;
S := S + Edit2.Text + #13;
S := S + Edit3.Text + #13;
S := S + Edit4.Text + #13;
S := S + Edit5.Text + #13;
S := S + Edit6.Text + #13;

uses Word Basic to insert the string into the current Word file:

MSWord.Insert(S);

uses Word Basic to move six lines up, to the beginning of the file:

MSWord.LineUp(6,1);

and uses Word Basic to post a message to user:

MSWord.MsgBox('Converting fields to table.');
MARCH 1996
Of course, we could have used Delphi to display this message,
but this way you can see how similar the task is in the two
languages.

The procedure also uses Word Basic to convert the text into a
WinWord table:

MSWord.TextToTable(ConvertFrom := 2,
NumColumns := 1);

Again, note that you must get the method details for an
OLE Automation-capable application from the application
itself. Delphi doesn’t supply this information for you. In
this case, I used the Word Basic Program Help System
from the WinWord 7.0 Help system to get information
about the methods and their accompanying parameter
requirements. In most cases, you’ll need to obtain the
equivalent information for any OLE Automation-capable
application you want to manipulate from your Delphi
applications.

The full listing for the Button1Click event-handler procedure is
shown in Figure 4.

The Random Button
The Random button’s OnClick event procedure works similarly
(see Figure 5). The main differences are that it uses a random
number generator to build the string to insert in the Word
file, and that it builds a slightly different table (one with three
columns).
Delphi INFORMANT ▲ 37

Figure 5: The Button2Click event handling procedure.

procedure TForm1.Button2Click(Sender: TObject);
var

S, S1,
S2, S3: string;
MSWord: Variant; { Represents OLE Automation Server. }
I, Num: Integer;

begin

{ Create an OLE WordBasic object. }
MSWord := CreateOLEObject('Word.Basic');
{ Use Word Basic commands to create a new Word file. }
MSWord.FileNew;
{ Build random string of values to use for table. }
Randomize;
S := '';

for I := 1 to 20 do
begin

Num := Random(99);
Str(Num,S1);
Num := Random(999);
Str(Num,S2);
Num := Random(9999);
Str(Num,S3);
S:= S+ S1 + ',' + S2 + ',' + S3 + ',' + #13;

end;

{ Use Word Basic to insert the string
into the current Word file. }

MSWord.Insert(S);
{ Use Word Basic to move up

to the beginning of the file. }
MSWord.LineUp(I,1);
{ Use Word Basic command to post a message to user. }
MSWord.MsgBox('Converting random numbers to table.');
{ Use Word Basic command to convert text to a table. }
MSWord.TextToTable(ConvertFrom := 2, NumColumns := 3);

end;

The Way of Delphi
Over and Out
Listings Three and Four, beginning on page 39, provide the
complete listing for this project.

Figures 6, 7, 8, 9, and 10 show the OLE Automation
Explorer at several stages of operation.

I think you’re going to hear a lot about OLE Automation as
applications learn to rely on each other for functionality
instead of doing it all themselves. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603GE.
MARCH 1996 Delphi INFORMANT ▲ 38

Gary Entsminger is the author of The Way of Delphi [Prentice-Hall, 1996], The Tao of
Objects [M&T Books, 1995], Secrets of the Visual Basic Masters [Sams, 1994], and
Developing Paradox Databases [M&T Books, 1993].

Figure 6 (Top): The example application, OLE Automation Explorer,
at run time before making an OLE connection. Figure 7: After
making the OLE connection to WinWord and creating a new file.
Figure 8: After inserting the string of data into the Word file.
Figure 9: After creating the first table. Figure 10: After creating
the second table.

The Way of Delphi
Begin Listing Three — The Project File: OLEExpl.DPR
program OLEExpl;

uses
Forms,
AutoEx in 'AutoEx.pas' {Form1};

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.
End Listing Three
Begin Listing Four — The Form File: AutoEx.PAS
unit AutoEx;

{ Uses Delphi's automation control to
use Word Basic to insert tables into
Word documents.
Microsoft Word as the automation server. }

interface

uses
Windows, Classes, Graphics, Forms,
Controls, DB, DBGrids, DBTables, Grids,
StdCtrls, ExtCtrls, ComCtrls;

type
TForm1 = class(TForm)

Edit1: TEdit; { 6 edit boxes to hold fields. }
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
Button1: TButton; { Use fields button. }
Button2: TButton; { Generate random table button. }
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

end;

var
Form1: TForm1;

implementation

uses OleAuto; { Delphi 2.0 OLEAuto support file. }

{$R *.DFM}

{ Use fields button click event procedure. }
procedure TForm1.Button1Click(Sender: TObject);
var

S : string;
MSWord: Variant; { Represents OLE Automation Server. }

begin

{ Create an OLE WordBasic object. }
MSWord := CreateOleObject('Word.Basic');
{ Use Word Basic commands to create a new Word file. }
MSWord.FileNew;
{ Build a string from edit boxes. }
S := Edit1.Text + #13;
S := S + Edit2.Text + #13;
S := S + Edit3.Text + #13;
S := S + Edit4.Text + #13;
S := S + Edit5.Text + #13;
S := S + Edit6.Text + #13;
MARCH 1996
{ Use Word Basic to insert the string
into the current Word file. }

MSWord.Insert(S);
{ Use Word Basic to move 6 lines up,

to the beginning of the file. }
MSWord.LineUp(6,1);
{ Use Word Basic to post a message to user. }
MSWord.MsgBox('Converting fields to table.');
{ Use Word Basic to convert text to a table. }
MSWord.TextToTable(ConvertFrom := 2, NumColumns := 1);

end;

{ Random button click event procedure. }
procedure TForm1.Button2Click(Sender: TObject);
var

S, S1,
S2, S3: string;
MSWord: Variant; { Represents OLE Automation Server. }
I, Num: Integer;

begin

{ Create an OLE WordBasic object. }
MSWord := CreateOleObject('Word.Basic');

{ Use Word Basic commands to create a new Word file. }
MSWord.FileNew;
{ Build random string of values to use for table. }
Randomize;
S := '';

for I := 1 to 20 do
begin

Num := Random(99);
Str(Num,S1);
Num := Random(999);
Str(Num,S2);
Num := Random(9999);
Str(Num,S3);
S:= S+ S1 + ',' + S2 + ',' + S3 + ',' + #13;

end;

{ Use Word Basic to insert the string
into the current Word file. }

MSWord.Insert(S);
{ Use Word Basic to move up

to the beginning of the file. }
MSWord.LineUp(I,1);
{ Use Word Basic command to post a message to user. }
MSWord.MsgBox('Converting random numbers to table.');
{ Use Word Basic command to convert text to a table. }
MSWord.TextToTable(ConvertFrom := 2, NumColumns := 3);

end;
end.

End Listing Four
Delphi INFORMANT ▲ 39

MARCH 1996

Informant Quick Tip
Delphi / Object Pascal

By Robert Vivrette

From the Start
Passing Command-Line Parameters

to a Delphi Application
O ccasionally, I see questions from users about how to add various
capabilities to their Delphi applications. Interestingly, one of the recur-
ring questions is also one of the easiest to answer: “How can I read

parameters from the command line?”

Many of you have used the properties pages for an application in Windows 3.1 or Windows 95.
To display an application’s properties page in Windows 95, right-click on the application’s icon
and select Properties from the pop-up menu. (In Windows 3.x, click on the application’s icon
and select File | Properties from the Program Manager menu.)

Figure 1 shows the Windows 95 properties page for a hypothetical application called ACCT-
POST. (Figure 2 shows the Windows 3.1 Properties dialog box for the same application.)
You’ll notice that the Target edit box
identifies the application’s name. More
importantly for the purposes of this
tip, it also allows you to enter com-
mand-line parameters.

Often, such a parameter represents
some file that you want to have the
application use (such as a word
processor opening a file). Such a
capability is typically managed by
means of the file type associations
that Windows provides. This is, for
example, how Windows knows to
launch the Notepad application
when you click on a file with a
.TXT extension.

There are situations, however, when
file associations aren’t enough. For
example, an application might
require multiple file names to be
passed to it, or the parameters aren’t
files at all, but are drive letters, values

Figure 1: The Properties sheet of the sample ACCTPOST
program, showing the command-line parameters (i.e. the
Accounts.DAT file, and the values 1045 and $23.45) that
will be passed to the application.
Delphi INFORMANT ▲ 40

Robert Vivrette is a contract programmer for Pacific Gas & Electric and Technical Editor
for Delphi Informant. He has worked as a game designer and computer consultant,
and has experience in a number of programming languages. He can be reached on
CompuServe at 76416,1373.

Figure 2: The Windows 3.1 Properties dialog box for the sample
ACCTPOST program (no command-line parameters are shown).

Figure 3: The demonstration project, ACCTPOST, at run time.

Informant Quick Tip
(e.g. account balances), or the like. Figure 1 illustrates just
this situation.

The Functions
Delphi provides two functions that allow you to get access to
these parameters: ParamCount and ParamStr. ParamCount is a
function that returns the number of parameters on the com-
mand line. ParamStr is a function that accepts a single para-
meter specifying the particular one you are interested in.

For example, ParamStr(1) would return a string value of the first
parameter, ParamStr(2) would return the second, and so on. As
a bonus, if you ask for ParamStr(0), you get the fully qualified
name (including drive letter and path) of the application itself.
Sometimes this is a handy way to have your program find out
which directory it’s running from.

A Demonstration
To illustrate these features, place a TEdit and a TMemo on a
form (as shown in Figure 3) and add the following code to
the FormCreate method:

procedure TForm1.FormCreate(Sender:
TObject);

var
a : Integer;

begin
Edit1.Text := IntToStr(ParamCount);
for a := 0 to ParamCount do

Memo1.Lines.Add(IntToStr(a) +
': ' + ParamStr(a));

end;
MARCH 1996
The code is straightforward. First, the ParamCount function is
used to determine the number of parameters and display
them in an Edit component. Then a for loop uses the value
returned by ParamCount to iterate through the ParamStr
string array and load each string into a Memo component.

When the program runs, the Edit component will indicate the
number of parameters that were passed and the Memo will list
each of the parameters found. Figure 3 gives you an indication
of how it operates.

There you have it! A quick and easy way to read values from
an application’s command-line. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603RV.
Delphi INFORMANT ▲ 41

At Your Fingertips
BY Dav i d R i p py

Delphi / Object Pascal

pportunities are usually disguised as hard work, so
most people don’t recognize them. — Ann Landers

O

How can I create a simple menu-level security system?
Virtually every applica-
tion needs some sort of
security. For typical
Delphi applications
that use the MainMenu
component, you can
easily add menu-level
security with just a few
lines of Object Pascal
code. In a menu-level
security system, the
user’s security level
(represented here by
the variable iSecLevel) is
compared to the securi-
ty level of each menu
item (via the menu
item’s Tag property). If
the user’s security level
is less than the menu
item’s Tag property, the
Visible property of the
menu item is set to
False, making it
unavailable to the user.

First, create a main
menu similar to the one
shown in Figure 1. As
you create each menu
item (New, Open, Save,
etc.), set its Tag proper-
ty to the desired securi-
ty level. For simplicity,

Figure 1 (Top): Create a MainMenu
component similar to this one.
Figure 2 (Middle): A security level of
1 hides several menu items.
Figure 3 (Bottom): A security level of
3 shows every menu item.
MARCH 1996
make 0 (the Tag’s default) the lowest level of security, and 3
the highest level of security. For the File menu, a typical
security system would set Open, Print, and Exit to 0, and New

and Save to 3. This would allow a person with a security
level of 0, 1, or 2 to view or print a document, but not cre-
ate or save a new one (see Figure 2). For users with a securi-
ty level of 3 or higher, all menu items would be available
(see Figure 3).

Take a look at the Button’s OnClick procedure:

procedure TForm1.Button1Click(Sender: TObject);
var

i, j, iSecLevel : Integer;
begin

{ Your app would not include this line. }
iSecLevel := StrToInt(Edit1.Text);

for i := 0 to MainMenu1.Items.Count - 1 do begin
if iSecLevel < MainMenu1.Items[i].Tag then begin

MainMenu1.Items[i].Visible := False;
Continue;

end
else

MainMenu1.Items[i].Visible := True;
for j := 0 to MainMenu1.Items[i].Count - 1 do begin

if iSecLevel < MainMenu1.Items[i].Items[j].Tag then
MainMenu1.Items[i].Items[j].Visible := False

else
MainMenu1.Items[i].Items[j].Visible := True;

end;
end;

end;

The code first assigns the value of Edit1 to the variable
iSecLevel. (Obviously, your application would assign the
user’s security level in a different manner.) It then iterates
through the MenuItems and compares each MenuItem’s Tag
property to the user’s security level (iSecLevel). Any
MenuItems with Tag values greater than iSecLevel are made
invisible.
Delphi INFORMANT ▲ 42

-

:

David Rippy is a Senior Consultant with Ensemble Corporation,
specializing in the design and deployment of client/server database
applications. He has contributed to several books published by
Que, and is contributing writer to Paradox Informant. David can be
reached on CompuServe at 74444,415.

Figure 4 (Top): This .AVI is too small for the Panel component.
Figure 5 (Bottom): That’s much better! The .AVI fits the Panel perfectly.

At Your Fingertips
Note that you can make an entire pull-down menu (File,
Edit, Window, etc.) invisible by setting its Tag property in the
same manner. For example, if Edit’s Tag was set to 3 and the
user’s security level was 2, the entire Edit pull-down would
be invisible. — D.R.

How can I stretch an .AVI image to completely fill a Panel
using the MediaPlayer component?
Have you ever used the MediaPlayer component to display an
.AVI file, but the .AVI is too small to fit the Panel on a form (see
Figure 4)? It would be nice if the MediaPlayer component had a
Stretch property similar to the Image component. Fear not! With
just one line of Object Pascal, we can simulate the Stretch proper
ty, allowing the size of an .AVI to grow or shrink as needed.

Add this Object Pascal to the Form’s OnCreate event handler

procedure TForm1.FormCreate(Sender: TObject);
begin

MediaPlayer1.DisplayRect :=
Rect(0,0,Panel1.Width,Panel1.Height);

end;

This code sets the DisplayRect property of the MediaPlayer to
the dimensions of the Panel object. This gives the MediaPlayer
the intelligence to automatically shrink or expand to fill the
Panel and eliminate the ugly empty space shown in Figure 4.
The modified form is shown in Figure 5. — D.R. (Special
thanks to Randy Haben and Jeff Hopper of Borland.)

How can I disconnect an event handler from an event?
Have you ever inadvertently called an event from within that
same event’s event handler? For example, if you have a field
called Amount, and whenever the field is changed, you want
to throw out the old value, and set the actual value to 42. You
might first try the following code:

procedure TForm1.Table1AmountChange(Sender: TField);
begin

Table1Amount.AsInteger := 42;
end;

This code will get you into trouble! Setting the value of
Amount to 42 triggers the event that, in turn, sets the
value to 42 a second time. The simple way to avoid this
recursion (without using those messy global variables) is to
temporarily disconnect the event handler from the
OnChange event as follows:

procedure TForm1.Table1AmountChange(Sender: TField);
begin

Table1Amount.OnChange := nil;
Table1Amount.AsInteger := 42;
Table1Amount.OnChange := Table1AmountChange;

end;

Now, when the value is set to 42, the Table1AmountChange
procedure doesn’t get called a second time, because it has been
disconnected from the OnChange event. The important point
here is that event handlers are really properties that can be
modified at run time! — David Faulkner, Silver Software Inc.
MARCH 1996
Quick Tip: Using the Windows 95 Taskbar
If you’re a Windows 95 user, you have probably found that the
Windows 95 Taskbar gets in the way of Delphi’s Object
Inspector and code editor. To remedy this, drag the Taskbar to
the right side of the screen where it’s out of the way. — D.R. ∆

The demonstration projects referenced in this article are avail-
able on the Delphi Informant Works CD located in
INFORM\96\MAR\DI9603DR.
Delphi INFORMANT ▲ 43

ABC for Delphi
A Low-Cost Collection of VCL Components

New & Used
b y Larry Clark

lling the demonstration .PAS file, ABC components appear on their own
ent Palette. In this example, the non-visual DBAppException component
elp.
ABCfor Delphi is a collection of more
than 30 VCL components.
Although “ABC” is the acronym

for “Advanced Business Components,” nothing seems
specifically business-oriented about the collection.

The package is supplied on a single diskette and includes an 82-
page saddle-bound manual. The manual contains installation
directions, a description of each component, and references for
the various properties, methods, events, types, and units.

The documentation is extremely brief. Within the compo-
nent descriptions, the narrative description generally occupies
less space than the simple enumeration of the component’s
properties, methods, and events. With derived components,
there’s no indication of which properties differ from those of
the component’s ancestor.

Although the manual contains no code examples, the diskette
comes with several demonstration programs that effectively
illustrate most of ABC’s features. Unfortunately, there is a
tendency to wrap several controls into a single demonstration,
making it difficult to see the essence of each component’s use.
I prefer to see smaller, self-contained examples that highlight
the critical aspects in both the manual and help file.

The installation of ABC follows the usual procedure for
adding Delphi component libraries and Help files. The
brief installation instructions worked well with no surpris-
es. Figure 1 shows a Component Palette
with the demonstration components
installed.

Functional Descriptions
The components of ABC for Delphi are
a mixed bag; I found no unifying theme.

Figure 1: After insta
page of the Compon
displays its balloon h
MARCH 1996
Rather, they seemed to be whatever the developers found
they could do with Delphi that might prove useful to other
developers. The manual’s Component Overview section (it’s
less than one page, including a 1/3-page table listing the
components) divides the components into three groups. For
the purpose of this discussion, however, I have created my
own classifications.

Exception Handling
I found ABC’s exception-handling components among the
best in the package. They provide important capabilities that
cannot be achieved nearly as easily without them.

TAppException provides a centralized facility for displaying and
logging error messages. You simply add a TAppException com-
ponent to the main form of your application. When an appli-
cation raises an exception that is not handled in a try..except
block, TAppException takes over.

Depending on property settings, it can display a message
box and/or log the error to a file, and optionally termi-
nate the program. A custom OnException event that gains
control before TAppException assumes control allows you
to take corrective actions and cancel TAppException’s nor-
mal behavior if necessary.

TDBAppException uses a database to extend the behavior of
TAppException. It allows you to use a lookup table within
your database to define exception messages. It also logs each
exception it encounters in another table.
Delphi INFORMANT ▲ 44

New & Used
Database Components
ABC’s database components provide marginal improvements
over the capabilities in the standard Delphi VCL. For the
most part, they offer convenience, but little in the way of new
functionality.

TDBSuperNav is an enhanced version of Delphi’s
TDBNavigator. It allows you to set the scroll rate for the
scroll buttons to approximately one, two, or four times the
normal speed. A new property causes some of the buttons to
be colored red or green, or can be set to show everything in
black as TDBNavigator does.

Four new buttons are added to TDBNavigator’s set. Two
are used to move forward or backward, within a data
source, by multiple records at a time (the exact number of
records being controlled by a property). A new up/down
pushbutton manipulates bookmarks within the data
source. Depressing it sets a bookmark and restoring it to
the up state jumps to the marked position and frees the
bookmark. Finally, the fourth new button is for append-
ing. It has the same functionality as I, but also auto-
matically scrolls to the end of the data set.

TDBRecordCount provides a label that automatically displays
the current record number and the number of records in a
data source. This control operates only with Paradox databas-
es. The format of the presentation is controlled by a mask
such as “Record #R of #N.”

TDBState provides another label, showing the current state of
the data source (e.g. Browse, Edit, or Insert). The text used to
describe the states can be changed.

Data-Aware Grids
Three controls deal with grids. One enhances the standard
TDBGrid, while the other two combine several components
to reduce the effort in displaying data-aware grids.

TDBFixedGrid enhances TDBGrid by adding properties to
support fixed-grid columns. The fixed columns cannot be
edited, and thus are suitable for displaying record keys. The
new properties allow you to specify the number of fixed
columns and the color in which they are displayed.

TDBTableGrid facilitates the creation of simple grids by com-
bining the functions of TTable, TDataSource, TDBGrid, and
TDBSuperNav into a single component. To create a grid, you
simply add the component and set the DatabaseName,
TableName, and Active properties that appear at the top of the
Object Inspector. Delphi performs all the usual links auto-
matically. The TDBSuperNav appears by default immediately
above the grid, but can be moved to a position immediately
below it as well.

TDBQueryGrid performs a similar function for query-based
grids, combining the functions of TQuery, TDataSource,
MARCH 1996
TDBGrid, and TDBSuperNav, and only requires you to set
the DatabaseName, SQL, and Active properties.

Labels
ABC offers five variations on Delphi’s Label control. The first
two combine labels with editable fields, while the remaining
three provide minor embellishments to standard labels.

TEditLabel combines an Edit and a Label into a single com-
ponent that can be moved and sized as a unit. Properties
control the size, alignment, and offset of the label portion.
This can be helpful in creating forms with numerous labeled
editable fields. However, the need to set the size and align-
ment properties on each control seems less convenient than
other approaches (e.g. the Elastic control of VS/VBX),
where such properties can be set on a form-wide basis.

TDBEditLabel is the data-aware equivalent, combining a
DBEdit and a Label.

TAutoLabel adds properties to Delphi’s TLabel to enable 3D
appearance and to make the border visible in a specified color.
A single-character separator can be automatically appended to
the caption text. Unlike TLabel ’s behavior, double-clicking on
a TAutoLabel toggles its AutoSize property, rather than jump-
ing to the control’s Click event.

TSuperLabel provides a similar set of border enhancements to
Delphi’s TLabel, but without the separator and with no
AutoSizing capability. In exchange, TSuperLabel provides top,
bottom, left, and right margins, and a vertical alignment
property, allowing precise positioning of label text.

TClockLabel, as the name implies, provides a label that shows
the time and date. A variety of default formats are supplied,
or you can specify a format string. The clock is updated auto-
matically at intervals controlled by a property.

Window Backgrounds
Four components provide background graphics for windows.
TBackground provides a gradient fill from one color to
another. The fill may be horizontal, vertical, diagonal, or
radial. This feature seems to interact badly with the
TClockLabel component (or with other components that
require it to repaint its background).

If the ClockLabel is transparent, for example, the color of the
underlying form flashes for an extended time between clock
updates. The problem is especially severe when using radial
fills, which seem to take longer to redraw. Aside from this flaw,
TBackground seems able to produce some attractive effects.

TTiledImage is an enhanced version of Delphi’s TImage com-
ponent with additional sizing options. The original image can
be stretched in both directions to fill the dimension of the
TTiledImage, or it can be repeated à la Windows wallpaper.
TMDIBackground and TMDITiledImage provide similar func-
Delphi INFORMANT ▲ 45

New & Used
tions and options as TBackground and TTiledImage, but for
the main form of an MDI application.

Buttons
ABC offers three new types of button controls:
• TPicBtn replaces Delphi’s TBitBtn component. It allows

pictures to be specified in icon, metafile, or bitmap for-
mat, and can be centered or tiled, in addition to the stan-
dard positioning options. Text can be given 3D effects,
either raised or lowered.

• TPicSpeedBtn adds the same properties to Delphi’s
TSpeedButton as TPicBtn adds to TBitBtn.

• TRepSpeedBtn extends TPicSpeedBtn by adding timer
functions to cause the MouseDown, MouseUp, and Click
events to fire repeatedly as long as the user holds down
the mouse button. Two intervals can be specified, indicat-
ing how long before the first repeated event fires and how
long between repeated events.

Miscellaneous
ABC’s remaining components are too diverse to classify, even
within this mixed bag.

TMouseRegion defines a transparent region that can be super-
imposed on other objects (e.g. a map) to create “hotspots.”
The borders of the region may be visible or invisible.
Standard events are triggered for Click, DblClick, MouseDown,
MouseMove, and MouseUp.

TPopupSelect combines the functions of Delphi’s Edit control
with a variation on the popup menu. When the user clicks and
holds down the mouse button over a PopupSelect field, the
popup menu appears. (This interferes with the ability to edit
the field via the mouse.) Unlike Delphi’s TPopupMenu, the
items on TPopupSelect’s menu are specified via a TStringList.

TStopWatch provides a timing function that can be used for
performance testing. The timer can be started and stopped by
invoking the TStopWatch’s Start and Stop methods. Multiple
tests can be timed and averaged. The Show method displays
the number of tests, the time of the last test, the total time for
all tests, and the average time. This data can then be logged
automatically to a specified file.

TSingleInstance is an unusual component. Simply placing one
of these on your application’s startup form prevents multiple
instances of the application from running concurrently. If
another instance is detected, TSingleInstance optionally dis-
plays a customizable message, then terminates execution or
attempts to transfer control to the other instance.

TLauncher allows your application to execute a Windows
program at a specified date and time. Launch times can be
specified as a combination of date, time, day of week, and
day of month (e.g. run payroll on the fifth of the month).
Events are provided to gain control immediately before and
MARCH 1996
after launching the program. The
program’s return code indicates
the results, including those
returned by the WinExec function.

TRSExit can be used to force
ReportSmith to close. The control
can close the design-time or run-
time version, or both. ReportSmith
can be forced to close programmat-
ically, or automatically when the
application ends.

TWin3D encapsulates
CTL3DV2.DLL to automatically
subclass Windows 3.x forms in the
3D style. Operating under
Windows 95, I had no need for
this component and was unable to
verify its operation. The documen-
tation was far too sketchy to give
me any idea about its ease of use.

TWinAbout makes it easy to create
an attractive About box containing the project name and
icon, the user’s name and affiliation (from the [MS User
Info] section of WIN.INI), and the amount of Windows
memory and system resources available, plus up to two lines
of customized text.

Unfortunately, the box is derived from a Microsoft stan-
dard, so (at least under Windows 95) it prefaces the pro-
ject name with “Microsoft” and inserts a Microsoft copy-
right notice.

TWinMsgBox encapsulates the MessageBox function, allow-
ing the relevant parameters to be specified by properties.
Setting the Beep property causes the system sound associat-
ed with the MsgType to play immediately before displaying
the message.

Pricing and Evaluation
ABC for Delphi is marketed by Objective Software
Technology, an Australian company. (It’s available in the
US from ZAC Catalogs, (800) GO-DELPHI). It sells for
US$179, without source code it’s available for US$89.

On a component-per-dollar basis, this makes ABC a bar-
gain. Even better, you can download a complete working
version of the program (design-mode only) from
CompuServe. Use the command GO DELPHI or GO
ICGFORUM, then download ABC1DEMO.EXE and
ABC1COMP.ZIP (see Figure 1).

Despite the low cost, I’m ambivalent about the package’s
value. None of the components strike me as “must-haves.” A

ABC for Delphi is an assortment
of VCL components that provides
a variety of exception-handling,
user-interface, and utility func-
tions. The user manual is rather
sparse, but a collection of demon-
stration programs helps illustrate
use of the components. A demon-
stration version can be obtained
from various online sites. Source
code is available at extra cost.

Objective Software
Technology
P.O. Box E138
Queen Victoria Terrace
CT 2600 Australia
Phone: +61 6-273-2100
E-Mail: CIS:100035,2441
Price: US$179; without source
code US$89
Delphi INFORMANT ▲ 46

New & Used
few seem fairly helpful, but most provide no new functionali-
ty and offer only marginal improvements in convenience.
Still, each seems to do something a little better or easier than
would be possible without the package.

Conclusion
With this product, the whole is greater than the sum of its
parts. When confronted with a problem that ABC could
help to solve, having the components pre-installed on your
Component Palette can save time and effort.

How valuable this is to you will depend on the nature of
your application, whether you want to perform one of the
functions that ABC provides, and how comfortable you feel
trying to create the same functionality without ABC’s help.

Considering the price, it would be difficult to argue that
the purchase is a foolish one. ∆
MARCH 1996 Delphi INFORMANT ▲ 47

Larry Clark is a principal of Logic Concepts, Inc., a Sacramento, CA-based software
development firm. He has been programming since 1959, and now specializes in
Delphi, Visual Basic, and Microsoft Access. An active member of the Sacramento PC
Users Group, he leads the group’s Delphi SIG, as well as its Visual Basic/Access SIG.
He can be contacted at larry.clark@sacpcug.org.

	Table of Contents
	Symposium
	Delphi Tools
	A Delphi Web Framework: WebHub for Windows
	SkyLine Tools Debuts ImageLib 3.1 and ImageLib 95
	AppSource Announces WIRED API Toolkit: An OLAP Resource for Delphi
	English Wizard VBX Translates English into SQL

	NewsLine
	Five-Year Ordeal Ends: Borland Prevails in Lotus Copyright Suit
	Delphi Named Finalist in 1996 Excellence in Software Awards
	Delphi Informant Reader’s Choice Banquet
	Delphi Web Seminar Announced
	Borland Names New Member and Chairman to Board of Directors
	New Delphi Power Tools Catalog Published

	DLLs: Part I
	Understanding DLLs
	A Waste of Space
	DLLs to the Rescue
	Dynamic Linking
	Creating Custom DLLs
	Declaring Libraries
	Using the exports Clause
	export Directive
	Architecting DLLs
	A Simple Library Example
	Using DLLFirst String-Handling Functions
	The FillStr Function
	The UpCaseFirstStr Function
	Until Next Time

	PQA: Part I
	A Little Forethought
	Test Planning Strategies
	Unit Test Drivers
	Unit Testing of Simple Functions
	Building a Unit-Test Tool Kit
	Conditional Compiler Directives
	Conclusion

	A Table Documentor
	Using the Utility
	A Look at the Code
	Questions and Answers
	Printing Table Structures
	Online Help
	A Note About Installation and the BDE
	Concluding with a Challenge

	Error Handling: Part II
	Understanding Exception Scope
	Reraising Exceptions
	Using the Exception Object
	Using Silent Exceptions
	Creating Custom Exceptions
	Creating a Custom Default Exception Handler
	Conclusion

	BDE Basics
	Backstage Operations
	Making BDE Calls from Delphi Applications
	Example 1: Packing Tables
	Example 2: Displaying Table Information
	Conclusion
	Listing One — The Packtabu Unit
	Listing Two — The Recnou Unit

	Approaching OLE Automation: Delphi 2.0 & Word Basic
	OLE Automation, a Gentle Introduction
	Using OLE Automation, the Basics
	The Example Project: OLE Automation Explorer
	The Use Fields Button
	The Random Button
	Over and Out
	Listing Three — The Project File: OLEExpl.DPR
	Listing Four — The Form File: AutoEx.PAS

	From the Start
	The Functions
	A Demonstration

	At Your Fingertips
	How can I create a simple menu-level security system?
	How can I stretch an .AVI image to completely fill a Panel using the MediaPlayer component?
	How can I disconnect an event handler from an event?
	Quick Tip: Using the Windows 95 Taskbar

	ABC for Delphi
	Functional Descriptions
	Exception Handling
	Database Components
	Data-Aware Grids
	Labels
	Window Backgrounds
	Buttons
	Miscellaneous
	Pricing and Evaluation
	Conclusion

